Cho hàm số y=\(\frac{1}{3}\)mx3 + mx2 + (m+1) +2
1. Tìm m để y'>0, với mọi x ϵ R
2. Tìm m để y'=0, có 2 nghiệm trái dấu
3. Tìm m để y'=0, có 2 nghiệm phân biệt cùng dấu
4. Tìm m để y'=0, có 2 nghiệm x1, x2 sao cho x1<1<x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Xét m = 0 ta có y = x +2 là hàm đồng biến nên m = 0 thỏa mãn
Đáp án C
Ta có: y ' = 3 m x 2 − 2 m x + 1. Khi hai điểm cực trị của đồ thị hàm số có hoành độ x 1 , x 2 là nghiệm của PT y ' = 0. Hai điểm cực trị nằm về hai phía trục tung ⇔ x 1 . x 2 < 0 ⇔ 2 m + 1 m < 0 ⇔ − 1 2 < m < 0.
\(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm thỏa mãn \(x_1< k< x_2\) khi và chỉ khi \(a.f\left(k\right)< 0\)
Đây là nguyên lý của tam thức bậc 2 từ lớp 10 thì phải
Phương Anh Đỗ
Nhìn đề đoán là \(y=\frac{1}{3}mx^3+mx^2+\left(m+1\right)x+2\)
\(y'=mx^2+2mx+m+1\)
a/ Với \(m=0\) thỏa mãn
Với \(m\ne0\) để \(y'>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-m\left(m+1\right)< 0\end{matrix}\right.\) \(\Rightarrow m>0\)
b/ Để \(y'=0\) có 2 nghiệm trái dấu
\(\Leftrightarrow m\left(m+1\right)< 0\Rightarrow-1< m< 0\)
c/ \(\left\{{}\begin{matrix}\Delta'=-m>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{m+1}{m}>0\end{matrix}\right.\) \(\Rightarrow m< -1\)
d/ \(x_1< 1< x_2\)
\(\Rightarrow m.y'\left(1\right)< 0\)
\(\Leftrightarrow m\left(m+2m+m+1\right)< 0\)
\(\Leftrightarrow m\left(4m+1\right)< 0\Rightarrow-\frac{1}{4}< m< 0\)