Tim so thuc X,biet:
(3x-5/12)^2-121/64=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi cả 3x-5 chia cho 12 hay chỉ có 5 chia cho 12 thui z ạ
Để biểu thức P có giá trị là 5 thì :
2x^2+3x = 5
<=> 2x^2+3x-5 = 0
<=> (2x^2-2x)+(5x-5) = 0
<=> (x-1).(2x+5) = 0
<=> x-1=0 hoặc 2x+5=0
<=> x=1 hoặc x=-5/2
Tk mk nha
Ta có \(P=2x^2+3x=5\)
\(\Rightarrow x.\left(2x+3\right)=5\)
Do đó x và 2x + 3 thuộc ước của 5
Mà \(Ư\left(5\right)\in\left\{1;5;-1;-5\right\}\)
Mặt khác 2x + 3 > x .
Tự làm tiếp :v
\(\left(3x-\frac{5}{12}\right)^2-\frac{121}{64}=0\)
\(\left(3x-\frac{5}{12}\right)^2=\frac{121}{64}\)
\(3x-\frac{5}{12}=\sqrt{\frac{121}{64}}\)
\(3x-\frac{5}{12}=\frac{11}{8}\)
\(3x=\frac{11}{8}+\frac{5}{12}\)
\(3x=\frac{33}{24}+\frac{10}{24}\)
\(3x=\frac{43}{24}\)
\(x=\frac{43}{24}:3\)
\(x=\frac{43}{24}\cdot\frac{1}{3}\)
\(x=\frac{43}{72}\)
\(\left(3x-\dfrac{5}{12}\right)^2-\dfrac{121}{64}=0\)
\(\left(3x-\dfrac{5}{12}\right)^2\) \(=0+\dfrac{121}{64}\)
\(3x-\dfrac{5}{12}\) \(=\sqrt{\dfrac{121}{64}}=\dfrac{11}{8}\)
\(3x\) \(=\dfrac{11}{8}+\dfrac{5}{12}=\dfrac{33+10}{24}=\dfrac{43}{24}\)
\(x\) \(\dfrac{3.43}{24}=\dfrac{43}{8}\)
a: \(A=\dfrac{19}{5}xy^2\cdot x^3y=\dfrac{19}{5}x^4y^3\)
b: Hệ số là 19/5 và bậc là 7
c: Khi x=1 và y=2 thì \(A=\dfrac{19}{5}\cdot1^4\cdot2^3=\dfrac{19}{5}\cdot8=\dfrac{152}{5}\)
\(b,4x^2-x-5=0\)
\(\Leftrightarrow4x^2-5x+4x-5=0\)
\(\Leftrightarrow x\left(4x-5\right)+4x-5=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{4}\end{cases}}\)
Bài 2
\(a,x^3+5x^2+3x-9\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2\)
b,\(x^3-7x-6\)
\(\Leftrightarrow x^3-3x^2+3x^2-9x+2x-6\)
\(\Leftrightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c,\(3x^3-7x^2+17x-5\)
\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)
\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)
Bài 1:
a)\(28x^3+15x^2+75x+125=0\)
\(\Leftrightarrow\left(4x+5\right)\left(7x^2-5x+25\right)=0\)
Dễ thấy: \(7x^2-5x+25=7\left(x-\frac{5}{14}\right)^2+\frac{675}{28}>0\)
\(\Rightarrow4x+5=0\Rightarrow x=-\frac{5}{4}\)
b)\(4x^2-x-5=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-5\right)=0\)
\(\Rightarrow x=-1;x=\frac{5}{4}\)
Bài 2:
a)\(x^3+5x^2+3x-9\)
\(=\left(x-1\right)\left(x+3\right)^2\)
b)\(x^3-7x-6\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c)\(3x^3-7x^2+17x-5\)
\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
Bài làm
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{y-x}{5-2}=\frac{42}{3}=14\)
Do đó: \(\hept{\begin{cases}\frac{x}{2}=14\\\frac{y}{5}=14\end{cases}\Rightarrow\hept{\begin{cases}x=28\\y=70\end{cases}}}\)
Vậy x = 28; y = 70
# Học tốt #
\(\frac{x}{2}=\frac{y}{5}\)=>5x=2y
=>2y-5x=0
=>2y-2x-3x=0
=>2(y-x)=3x
=>2.42=3x
=>3x=84=>x=26,y=68