H=-1/3+1/32-1/33+1/34-...+1/350-1/351
giúp tôi với ai nhanh tôi tick cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(1+3+3^2+..+3^{2000}=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+..+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(=13.1+13\cdot3^3+..+13\cdot3^{1998}\) chia hết cho 13
tương tự
\(1+4+4^2+..+4^{2012}=\left(1+4+4^2\right)+..+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21.1+21\cdot4^3+..+21.4^{2010}\) chia hết cho 21
a,
`3A=3+3^3+3^3+...+3^{53}`
`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`
`2A=3^{53}-1`
`A=(3^{53}-1)/2`
b,
`A=1+3+3^3+3^3+...+3^{52}`
`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`
`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`
`A=(1+3+3^2)*(1+3^3+....+3^{50})`
`A=13*(1+3^3+....+3^{50})`
Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `
Vậy `A \vdots 13 `
\(\frac{2015^{35}+1}{2015^{34}+1}=\frac{2015^{35}+2015-2014}{2015^{34}+1}=\frac{2015\left(2015^{34}+1\right)-2014}{2015^{34}+1}=\frac{2015\left(2015^{34}+1\right)}{2015^{34}+1}-\frac{2014}{2015^{34}+1}=2015-\frac{2014}{2015^{34}+1}\)
\(\frac{2015^{34}+1}{2015^{33}+1}=\frac{2015^{34}+2015-2014}{2015^{33}+1}=\frac{2015\left(2015^{33}+1\right)-2014}{2015^{33}+1}=\frac{2015\left(2015^{33}+1\right)}{2015^{33}+1}-\frac{2014}{2015^{33}+1}=2015-\frac{2014}{2015^{33}+1}\)
Mà \(2015-\frac{2014}{2015^{34}+1}>2015-\frac{2014}{2015^{33}+1}\)
Vậy\(\frac{2015^{35}+1}{2015^{34}+1}>\frac{2015^{34}+1}{2015^{33}+1}\)
C = 1/2*(1/1 - 1/3 + 1/3 - .... - 1/23)
C= 1/2*(1- 1/23)
C = 1/2 * 22/23
C = 11/23
C=1/1*3+1/3*5+1/5*7......+1/21*23
C=1/2*(1-1/23)
C=1/2*22/23
C=11/23
tick nha
=00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Phải trả lời thì mới tick được
\n\nsai r
\n