K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2020

Vì a > 0 => a; a^2 + 1> 0 => a/a^2+1 >0 và a^2+1/2a > 0 

Áp dụng co si cho hai số không âm ta có: 

\(\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)

\(\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}+\frac{9.2a}{4a}\)

\(=1+\frac{9}{2}=\frac{11}{2}\)

Dấu "=" xảy ra <=> a = 1

Vậy min S = 11/2  tại a = 1

12 tháng 11 2017

Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ

NV
1 tháng 7 2019

\(P=a+\frac{1}{a}=\frac{a}{2005^2}+\frac{1}{a}+\left(1-\frac{1}{2005^2}\right)a\)

\(P\ge2\sqrt{\frac{a}{2005^2}.\frac{1}{a}}+\left(1-\frac{1}{2005^2}\right).2005=\frac{1}{2005}+2005\)

Dấu "=" xảy ra khi \(a=2005\)

\(P=a+b+\frac{1}{2a}+\frac{2}{b}=\frac{a}{2}+\frac{1}{2a}+\frac{b}{2}+\frac{2}{b}+\frac{1}{2}\left(a+b\right)\)

\(P\ge2\sqrt{\frac{a}{2}.\frac{1}{2a}}+2\sqrt{\frac{b}{2}.\frac{2}{b}}+\frac{1}{2}.3=\frac{9}{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Câu cuối đề sai, bạn nhìn hai số hạng cuối cùng

3 tháng 9 2016

1/

a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm

b/ Đề sai , giả sử với a = 3

c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)

d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)

 

3 tháng 9 2016

2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

BT đạt giá trị nhỏ nhất bằng 2 tại x = 3

b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

BT đạt giá trị lớn nhất bằng -2 tại x = 3

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

25 tháng 9 2019

trả lời lẹ cho tui cấy

18 tháng 10 2020

Áp dụng bất đẳng thức AM - GM cho 3 số dương, ta được: \(S=2a+\frac{1}{a^2}=\left(\frac{1}{a^2}+8a+8a\right)-14a\ge3\sqrt[3]{\frac{1}{a^2}.8a.8a}-14.\frac{1}{2}=5\)

Đẳng thức xảy ra khi a = 1/2