K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

\(\frac{36}{x}+\frac{36}{x-12}=\frac{9}{2}\)

ĐKXĐ : x ≠ 0 ; x ≠ 12

pt ⇔ \(36\left(\frac{1}{x}+\frac{1}{x-12}\right)=\frac{9}{2}\)

⇔ \(\frac{x-12}{x\left(x-12\right)}+\frac{x}{x\left(x-12\right)}=\frac{1}{8}\)

⇔ \(\frac{x-12+x}{x\left(x-12\right)}=\frac{1}{8}\)

⇔ \(\frac{2x-12}{x\left(x-12\right)}=\frac{1}{8}\)

⇔ ( 2x - 12 ).8 = x( x - 12 )

⇔ 16x - 96 = x2 - 12x

⇔ x2 - 12x - 16x + 96 = 0

⇔ x2 - 28x + 96 = 0 (1)

Δ' = b'2 - ac = ( b/2 )2 - ac = ( -14 )2 - 96 = 100

Δ' > 0 nên (1) có hai nghiệm phân biệt

\(x_1=\frac{-b+\sqrt{\text{Δ}'}}{a}=\frac{14+\sqrt{100}}{1}=24\)(tm)

\(x_2=\frac{-b-\sqrt{\text{Δ}'}}{a}=\frac{14-\sqrt{100}}{1}=4\)(2)

Vậy phương trình có hai nghiệm x1 = 24 ; x2 = 4

2 tháng 1 2021

\(\frac{36}{x}+\frac{36}{x-12}=\frac{9}{2}\)ĐKXĐ : \(x\ne0;12\)

\(\Leftrightarrow\frac{72\left(x-12\right)}{2x\left(x-12\right)}+\frac{72x}{2x\left(x-12\right)}=\frac{9x\left(x-12\right)}{2x\left(x-12\right)}\)

Khử mẫu : \(72\left(x-12\right)+72x=9x\left(x-12\right)\)

\(\Leftrightarrow72x-864+72x=9x^2-108x\)

\(\Leftrightarrow252x-864-9x^2=0\)

\(\Leftrightarrow9\left(x-24\right)\left(x-4\right)=0\Leftrightarrow x=24;4\)

20 tháng 5 2023

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

15 tháng 5 2023

`a,3x^2-3x(-2+x) <= 36`

`<=> 3x^2 + 6x -3x^2 <= 36`

`<=> 6x <= 36`

`<=> x <= 6`

Vậy bpt đã cho có tập nghiệm `x <= 6`

`b, (x+2)^2 -9>0`

`<=> (x+2)^2 > 9`

`<=>(x+2)^2 > 3^2`

`<=> x+2> +- 3`

`<=> x>1;-5`

Vậy bpt đã cho có tập nghiệm `x>1` hoặc `x> -5`

a: =>3x^2+6x-3x^2<=36

=>6x<=36

=>x<=6

b: =>(x-1)(x+5)>0

=>x>1 hoặc x<-5

17 tháng 3 2020

ĐK : \(x+1>0=>x\ge-1\)

Đặt \(\sqrt{x+1}=t=>t\ge0=>x+1=t^2=>x=t^2-1=>x^2=t^4-2t^2+1\)

Khi đó ta có \(t^4-2t^2+1+t^2-1+12t-36=0\)

=>\(t^4-t^2+12t-36=0\)

=>\(t^4-2t^3+2t^3-4t^2+3t^2-6t+18t-36=0\)

=>\(t^3\left(t-2\right)+2t^2\left(t-2\right)+3t\left(t-2\right)+18\left(t-2\right)=0\)

=>\(\left(t-2\right)\left(t^3+2t^2+3t+18\right)=0\)

=>\(\hept{\begin{cases}t=2\\t^3+2t^2+3t+18=0\left(loại\right)do\left(t\ge0=>t^3+2t^2+3t+18>0\right)\end{cases}}\)

=>\(t=2=>x+1=4=>x=3\)(thảo mãn đk)

zậy...

31 tháng 5 2023

\(a,3x^2-3x\left(-2+x\right)\le36\)

\(\Leftrightarrow3x^2+6x-3x^2-36\le0\)

\(\Leftrightarrow6x\le36\)

\(\Leftrightarrow x\le6\)

\(b,\left(x+2\right)^2-9>0\)
\(\Leftrightarrow\left(x+2\right)^2-3^2>0\)

\(\Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x+5>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-5\end{matrix}\right.\)

b: =>(x+2-3)(x+2+3)>0

=>(x+5)(x-1)>0

=>x-1>0 hoặc x+5<0

=>x>1 hoặc x<-5

10 tháng 7 2021

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

NV
21 tháng 1 2024

\(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)

\(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)

\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)

\(\Leftrightarrow x-100=0\) (do \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\ne0\))

\(\Leftrightarrow x=100\)

20 tháng 2 2016

quy đồng xong khử mẫu là okeee