Số nguyên x lớn nhất để \(\frac{3}{\sqrt{x}+1}\ge2\) là
A.0 B.1. C.2 D.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 (loại) |
x | 16 | 4 | 25 | 1 | 49 |
Vậy ....
2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Do x2 + 3 \(\ge\)3 \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)
=> \(1+\frac{12}{x^2+3}\le5\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy Max B = 5 khi x = 0
I) Đk: x > 0 và x \(\ne\)9
\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)
<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)
<=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Với x\(\ge\)0; ta có:
\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)
<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)
<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))
Dấu "=" xảy ra<=> x = 0
Vậy MinE = 0 <=> x = 0
Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)
=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)
Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1
Vậy MaxE = 2/3 <=> x = 1
3
dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*
khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)
\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)
khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)
vi x^2 +y^2 +z^2 la so nt va x+y+z>1
nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)
giai ra ta co x=y=z=1
Câu !! .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))
\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)
\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)
\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)
\(< =>x=9\)(thỏa mãn đk)
vậy.....
1.
\(DK:x\ge2\)
\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\ge2\)
Vay nghiem cua PT la \(x=3\)
\(x^3+2x=y^2-2009\)
\(\Leftrightarrow x^3-x=y^2-3x-2009\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)
Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3
Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 )
Vậy pt vô nghiệm