K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

gọi m là 1 giá trị của biểu thức P, Khi đó hệ phương trình sau phải có nghiệm đối với x,y

\(\hept{\begin{cases}\frac{x^2}{9}+\frac{y^2}{16}=36\left(1\right)\\x-y+2004=m\left(2\right)\end{cases}}\)

Từ ( 2 ) suy ra y = x + 2004 - m

Thế vào ( 2 ),ta được : \(16x^2+9\left(x+2004-m\right)^2=144.36=5184\)

\(\Leftrightarrow25x^2+18\left(2004-m\right)x+9\left(2004-m\right)^2-5184=0\)( 3 )

Hệ PT có nghiệm khi PT ( 3 ) có nghiệm 

\(\Rightarrow\Delta'=\left[9\left(2004-m\right)\right]^2-25\left[9\left(2004-m\right)^2-5184\right]\ge0\)

\(\Leftrightarrow\left(2004-m\right)^2\le900\Leftrightarrow-30\le2004-m\le30\)

\(\Leftrightarrow1974\le m\le2034\)

từ đó tìm được GTNN của P là 1974 khi \(x=\frac{-54}{5};y=\frac{96}{5}\)

GTLN của P là 2034 khi \(x=\frac{54}{5};y=\frac{-96}{5}\)

13 tháng 9 2015

Từ giả thiết ta suy ra \(16x^2+9y^2=72^2.\) Theo bất đẳng thức Bunhia: \(36\times25=\left(\frac{x^2}{9}+\frac{y^2}{16}\right)\left(9+16\right)=\left(\frac{x^2}{9}+\frac{\left(-y\right)^2}{16}\right)\left(9+16\right)\ge\left(x-y\right)^2\to-30\le x-y\le30.\)

Do đó \(1985\le P\le2045\).

Khi \(x=\frac{54}{5},y=-\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=2045.\)

Khi \(x=-\frac{54}{5},y=\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=1985.\)

Vậy giá trị lớn nhất của \(P\)\(2045\) và giá trị bé nhất là \(1985.\)

 

19 tháng 7 2021

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

25 tháng 10 2015

A = \(\frac{2x+3y}{2x+y+2}\) 

<=> A(2x + y + 2) = 2x + 3y 

<=> 2x.A + y.A + 2.A = 2x + 3y

<=> 2x(1 - A) + (3 - A).y = 2.A

Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]< (4x+ y2) .[(1 - A)+ (3 - A)2

=> (2.A)< 2A2 -8A + 10

<=> - 2A- 8A  + 10 > 0

<=> A+ 4A - 5 <

<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1

Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y= 1 => x ; y

Max A = 1 tại....