K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

Theo giả thiết, ta có: \(\left(a+b\right)c=ab\Leftrightarrow c^2=ab-ac-bc+c^2\)

\(\Leftrightarrow c^2=a\left(b-c\right)-c\left(b-c\right)\Leftrightarrow c^2=\left(a-c\right)\left(b-c\right)\)(1)

Đặt \(\left(a-c;b-c\right)=d\). Khi đó thì \(\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}}\Rightarrow\left(a-c\right)\left(b-c\right)⋮d^2\)(2)

Từ (1) và (2) suy ra \(c^2⋮d^2\Leftrightarrow c⋮d\). Mặt khác \(\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)

Suy ra được: \(\left(a,b,c\right)=d\)mà a,b,c nguyên tố cùng nhau nên d = 1

Vậy thì \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)nên tồn tại hai số nguyên dương m, n sao cho \(\hept{\begin{cases}a-c=m^2\\b-c=n^2\end{cases}}\Rightarrow c^2=\left(mn\right)^2\Rightarrow c=mn\)(do c, m, n nguyên dương)

Khi đó \(a+b=\left(a-c\right)+\left(b-c\right)+2c\)

\(=m^2+n^2+2mn=\left(m+n\right)^2\)(là số chính phương)

Vậy a + b là số chính phương (đpcm)

+)Ta có:a+b\(⋮\)c

               a+c\(⋮\)b

              b+c\(⋮\)a

=>(a+b)+(a+c)+(b+c)\(⋮\)a+b+c

=>a+b+a+c+b+c\(⋮\)a+b+C

=>2a+2b+2c\(⋮\)a+b+c

=>2.(a+b+c)\(⋮\)a+b+c

=>a+b+c\(⋮\)2

Th1:a=2;b và c là số nguyên tố lẻ chì chia hết cho 2

TH2:a và c là số nguyên tố lẻ;b=2

TH3:a và b là số nguyên tố lẻ,c=2

Vậy cả 3 TH trên đều thỏa mãn

Chúc bn học tốt

15 tháng 4 2020

DÊ vcl

12 tháng 9 2016

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

tích mik nhé

12 tháng 9 2016

Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.

Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
 

\

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương