Tìm các số nguyên dương a, b, c đôi một nguyên tố cùng nhau thoả mãn:
1/a + 1/b = 1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, ta có: \(\left(a+b\right)c=ab\Leftrightarrow c^2=ab-ac-bc+c^2\)
\(\Leftrightarrow c^2=a\left(b-c\right)-c\left(b-c\right)\Leftrightarrow c^2=\left(a-c\right)\left(b-c\right)\)(1)
Đặt \(\left(a-c;b-c\right)=d\). Khi đó thì \(\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}}\Rightarrow\left(a-c\right)\left(b-c\right)⋮d^2\)(2)
Từ (1) và (2) suy ra \(c^2⋮d^2\Leftrightarrow c⋮d\). Mặt khác \(\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)
Suy ra được: \(\left(a,b,c\right)=d\)mà a,b,c nguyên tố cùng nhau nên d = 1
Vậy thì \(\left(a-c;b-c\right)=1\)
Mà \(\left(a-c\right)\left(b-c\right)=c^2\)nên tồn tại hai số nguyên dương m, n sao cho \(\hept{\begin{cases}a-c=m^2\\b-c=n^2\end{cases}}\Rightarrow c^2=\left(mn\right)^2\Rightarrow c=mn\)(do c, m, n nguyên dương)
Khi đó \(a+b=\left(a-c\right)+\left(b-c\right)+2c\)
\(=m^2+n^2+2mn=\left(m+n\right)^2\)(là số chính phương)
Vậy a + b là số chính phương (đpcm)
+)Ta có:a+b\(⋮\)c
a+c\(⋮\)b
b+c\(⋮\)a
=>(a+b)+(a+c)+(b+c)\(⋮\)a+b+c
=>a+b+a+c+b+c\(⋮\)a+b+C
=>2a+2b+2c\(⋮\)a+b+c
=>2.(a+b+c)\(⋮\)a+b+c
=>a+b+c\(⋮\)2
Th1:a=2;b và c là số nguyên tố lẻ chì chia hết cho 2
TH2:a và c là số nguyên tố lẻ;b=2
TH3:a và b là số nguyên tố lẻ,c=2
Vậy cả 3 TH trên đều thỏa mãn
Chúc bn học tốt
Gọi UCLN của a-c và b-c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương
tích mik nhé
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.
Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
\
Gọi UCLN của a-c và b-c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương