cho \(\Delta ABC\) vuông ở A. \(\widehat{B}-\widehat{C}=30^0\).Vẽ đường phân giác AD và đường cao AH của \(\Delta ABC\).Tính \(\widehat{HAD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vé nhé.
tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=10\left(DO-BC>0\right)\)
b) xét \(\Delta ABC\) VÀ \(\Delta HBA\) CÓ:
\(\widehat{BAC}=\widehat{AHB}\)
\(\widehat{B}\) CHUNG
\(\Rightarrow\Delta ABC\) đồng dạng vs \(\Delta HBA\)
c)sửa đề:\(AB^2=BH.BC\)
TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)
\(\Rightarrow AH^2=BH.BC\)
Xét tam giác ABC vuông tại A
sinB = \(\dfrac{AC}{BC}\Rightarrow\dfrac{1}{2}=\dfrac{AC}{BC}\Rightarrow\dfrac{BC}{2}=\dfrac{AC}{1}\Rightarrow\dfrac{BC^2}{4}=\dfrac{AC^2}{1}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{BC^2}{4}=\dfrac{AC^2}{1}=\dfrac{AB^2}{3}=12\Rightarrow BC=4\sqrt{3};AC=2\sqrt{3}\)
Vì CD là phân giác ^C nên
\(\dfrac{AD}{BD}=\dfrac{AC}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{BD}{BC}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}=\dfrac{AB}{AC+BC}=\dfrac{6}{6\sqrt{3}}=\dfrac{\sqrt{3}}{3}\Rightarrow AD=2\)
=> BD = AB - AD = 6 - 2 = 4
em gửi bài qua fb thầy HD cho, tìm fb của thầy bằng sđt: 0975705122, ở đây thầy không vẽ hình được
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp