Tính
\(A=\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{1}{8+3\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\sqrt{\frac{2}{16+6\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\frac{\sqrt{2}}{3+\sqrt{7}}\left(3+\sqrt{7}\right)\sqrt{2}\)
\(A=2\)
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{2}\)
A=\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.3\sqrt{2}+\sqrt{14}=\sqrt{\frac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\sqrt{2}\left(3+\sqrt{7}\right)\)
\(8>3.\sqrt{7}\Rightarrow8-3\sqrt{7}>0\left(lienhop\right)\left(8-3\sqrt{7}\right)\)
\(A=\sqrt{\left(8-3.\sqrt{7}\right)}.\sqrt{2}\left(3+\sqrt{7}\right)\)
\(A=\sqrt{\left(16-2.3.\sqrt{7}\right)}.\left(3+\sqrt{7}\right)\)
\(A=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}.\left(3+\sqrt{7}\right)\)
\(A=\sqrt{\left(3-\sqrt{7}\right)^2}\left(3+\sqrt{7}\right)\)
\(3-\sqrt{7}>0\)
\(\Rightarrow A=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)=9-7=2\)
\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}\cdot\sqrt{2}\left(3+\sqrt{7}\right)\\ =\sqrt{\dfrac{2\left(3+\sqrt{7}\right)^2}{8+3\sqrt{7}}}=\sqrt{\dfrac{32+12\sqrt{7}}{8+3\sqrt{7}}}\\ =\sqrt{\dfrac{4\left(8+3\sqrt{7}\right)}{8+3\sqrt{7}}}=\sqrt{4}=2\)