Cho tam giác ABC nội tiếp đường tròn. P,Q,R theo thứ tự là các điểm chính giữa các cung bị chắn BC,CA,AB bởi các góc A,B,C. Có: AP⊥QR. Vẽ AP cắt CR tại I, ta được tam giác CPI là tam giác cân. Cho điểm A di chuyển trên cung lớn BC, hỏi I di chuyển trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi K là giao điểm của QR và AP.
là góc có đỉnh K nằm bên trong đường tròn
⇒ AP ⊥ QR.
+ R, P lần lượt là điểm chính giữa các cung
⇒ ΔPCI cân tại P.
Kiến thức áp dụng
+ Số đo của góc có đỉnh nằm bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+ Số đo của góc nội tiếp bằng một nửa số đo cung bị chắn.
+ R, P lần lượt là điểm chính giữa các cung
⇒ ΔPCI cân tại P.
a) Gọi giao điểm của AP và QR là K.
\(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn nên
\(\widehat{AKR}\) = sđcung(AR +QC + CP)/2 =
Vậy \(\widehat{AKR}\) = 900 hay AP \(\perp\) QR
b) \(\widehat{CIP}\) là góc có đỉnh ở bên trong đường tròn nên:
\(\widehat{CIP}\) = sđcung(AR +CP)/2 (1)
\(\widehat{PIC}\) góc nội tiếp, nên \(\widehat{PIC}\)= (sđ cung RB + BP)/2 (2)
Theo giả thiết thì cung AR = RB (3)
Cung CP = BP (4)
Từ (1), (2), (3), (4) suy ra: \(\widehat{CIP}\) = \(\widehat{PIC}\). Do đó \(\Delta\)CPI cân.
Gọi K là giao điểm của QR và AP.
là góc có đỉnh K nằm bên trong đường tròn
⇒ AP ⊥ QR.
a: góc RQP+góc QPA
=1/2*(sđ cung RP+sđ cung QA)
=1/2*(1/2*sđ cung CA+1/2sđcung AB+1/2sđcungBC)
=1/4*360=90 độ
=>AP vuông góc QR
b: góc CIP=1/2(sđ cung CP+sđ cung AR)
=1/2(sđ cung BP+sđcung RB)
=1/2*sd cung PR
=góc ICP
=>ΔCPI cân tại P
Nguyễn Lê Phước Thịnh
Akai Haruma Giáo viên
giúp em với ak, ai biết giúp với