Bài 1 :Chứng tỏ rằng :\(\frac{1}{a}\)=\(\frac{1}{a+1}\)+\(\frac{1}{a\left(a+1\right)}\)với a thuộc Z; a khác 0 ; a khác -1
Áp dụng: viết phân số \(\frac{1}{5}\)thành tổng của ba phân số Ai Cập
Bài 2: tìm các số nguyên n để phân số A= \(\frac{n+3}{n-2}\)nhận giá trị là số nguyên
1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)
Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)
2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)
A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên
<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=> \(n=\left\{-3;1;3;7\right\}\)
Mình học dốt nên chỉ làm được bài 2 thôi :)
\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên
=> \(5⋮n-2\)
=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)