K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

Xét \(p=2\)

\(\Rightarrow x^3=4+1=5\)

\(\Leftrightarrow x=\sqrt[3]{5}\left(ktm\right)\)

Xét \(p>2\Rightarrow p\)lẻ 

Ta thấy \(2p+1\)lẻ với mọi \(p\)

\(\Rightarrow x^3\)lẻ \(\Leftrightarrow x\)lẻ

Đặt \(x=2a+1\)

\(\Rightarrow\left(2a+1\right)^3=2p+1\)

\(\Leftrightarrow8a^3+12a+6a+1=2p+1\)

\(\Leftrightarrow2a\left(4a^2+6a+3\right)=2p\)

\(\Leftrightarrow a\left(4a^2+6a+3\right)=p\)

Mà \(p\)là số nguyên tố 

\(\Rightarrow a\left(4a^2+6a+3\right)=p\Leftrightarrow\orbr{\begin{cases}a=1\\a=p\end{cases}}\)

\(\left(+\right)a=1\Rightarrow1\left(4.1^2+6.1+3\right)=p\)

\(\Leftrightarrow p=13\left(tm\right)\Rightarrow x^3=2.13+1\)

\(\Leftrightarrow x^3=27\Leftrightarrow x=3\left(tm\right)\)

\(\left(+\right)a=p\Rightarrow p\left(4p^2+6p+3\right)=p\)

\(\Leftrightarrow4p^2+6p+3=1\left(p>2\right)\)

\(\Leftrightarrow4p^2+4p+2p+2=0\)

\(\Leftrightarrow\left(4p+2\right)\left(p+1\right)=0\Leftrightarrow\orbr{\begin{cases}4p+2=0\\p+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}p=-\frac{2}{4}\left(ktm\right)\\p=-1\left(ktm\right)\end{cases}}\)

Vậy với p là số nguyên tố thì x = 3

30 tháng 4 2020

Vì p là snt nên 2p+1 là số lẻ. Do đó x3 là một số lẻ và x là số lẻ

Ta đặt x=2k+1 (k thuộc N)

Khi đó 2p+1=2(2k+1)3=8k3+12k2+6k+1

Vậy đặt 2p=8k3+12k2+6k

<=> p=4k3+6k2+3k=k(4k2+6k+3)

Vì p là số nguyên tối nên k=1 do đó x=3

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

23 tháng 11 2016

vì n và n+1 là 2 số tự nhiên liên tiếp

=) n + n+1 chia hết cho 2        (1)

vì n, n+1 và n+2 là 3 stn liên tiếp 

=) n+n+1+n+2 chia hết cho 3     (2)

Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6

hay BCNN của n+n+1+n+2 là 6

vậy ....

14 tháng 9 2017

Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x 3 = 2p + 1 nên x 3 cũng là một số lẻ, suy ra x là số lẻ

Gọi x = 2k + 1 (k Є N). ta có

x 3 = 2p + 1 ó ( 2 k   +   1 ) 3 = 2p + 1

 

⇔   8 k 3   +   12 k 2   +   6 k   +   1   =   2 p   +   1   ⇔   2 p   =   8 k 3   +   12 k 2   +   6 k     ⇔   p   =   4 k 3   +   6 k 2   +   3 k   =   k ( 4 k 2   +   6 k   +   3 )

Mà p là số nguyên tố nên k = 1 => x = 3

Vậy số cần tìm là x = 3

Đáp án cần chọn là: D

23 tháng 11 2020

mai giải hết nhé

24 tháng 11 2020

p=2 không thỏa

p=3 thỏa

nếu p>3 thì p chia 3 dư 1 hoặc 2

p chia 3 dư 1 => p+14 chia hết cho 3; lớn hơn 3 => vô lí

p chia 3 dư 2 => p+40 chia hết cho 3; lớn hơn 3 => vô lí

vậy p=3