Chứng minh rằng với n thuộc N* ta có
A=1\(^5\)+2\(^5\)+3\(^5\)+...+n\(^5\)\(⋮\)B=1+2+3+...+n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11
=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12
=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11
=> 16A = 1-1/5^11+11/5^12-11/5^11
Vì 1-1/5^11 < 1 ; 11/5^12 -11/5^11 < 0
=> 16A < 1
=> A < 1/16
Áp dụng a^n-b^n chia hết cho a-b với mọi n là số tự nhiên :a^n-1+b^n-1 chia hết cho a+b với mọi n là số tự nhiên
Đổi7^4n=2401^n nưa là ra 3 câu
a) 74n có tận cùng là 1 và số có tận cùng là 1 ( 74n) khi trừ đi 1 sẽ có tận cùng là 0 ( ..... 1 - 1 =........0 )nên chia hết cho 5
b) 34n có tận cùng là 1 , tận cùng là 1 cộng với 1 với 2 sẽ có tận cùng là 4 ( .......1 + 1+2 = ........4 ) nên không chia hết cho 5
Bạn đừng thắc mắc tại sao mìn biết 7 4n và 3 4n có tận cùng là 1 , cái này cô giáo dạy mìn rùi , kiểu dạng có công thức ấy mà ... Tóm lại , đừng thắc mắc nha
Tick nha , lần sau mìn giúp tiếp
Câu a đề sai rồi bạn
b: \(=n^2-1-n^2+12n-35=12n-36⋮12\)
Bạn tham khảo link này nhé: https://vn.answers.yahoo.com/question/index?qid=20100216060237AAIkOrJ