K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

đang luyện Bu-nhi-a-cốp-ski :)) 

lời giải

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a^2+1\right)\left[1+\left(b+c\right)^2\right]\ge\left(a+b+c\right)^2\)

\(\Rightarrow\frac{3}{4}\left(a^2+1\right)\left[1+\left(b+c\right)^2\right]\ge\frac{3\left(a+b+c\right)^2}{4}\)

Cần chứng minh : \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{3}{4}\left(a^2+1\right)\left[1+\left(b+c\right)^2\right]\)

\(\Leftrightarrow4\left(b^2c^2+b^2+c^2+1\right)\ge3\left(b^2+c^2+2bc+1\right)\)

\(\Leftrightarrow\left(2bc-1\right)^2+\left(b-c\right)^2\ge0\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{1}=\frac{1}{b+c}\\b=c\\2bc=1\end{cases}}\Leftrightarrow a=b=c=\pm\frac{1}{\sqrt{2}}\)

13 tháng 2 2020

a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)

Đẳng thức xảy ra khi \(a=b=c\)

b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=c\)

c) Theo câu b và BĐT Cauchy-Schwarz:

\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(a=b=c\)

13 tháng 2 2020

áp dụng bđt cô si có dc k

3 tháng 10 2019

https://hoc24.vn/id/2782086

3 tháng 10 2019

@Nguyễn Việt Lâm

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

17 tháng 6 2019

t nói trước đây là bài làm rất xàm nên đừng tin nhé,spam đấy!

Không mất tính tổng quát giả sử \(c\ge0\)

\(a=c+x+y;b=c+y;c=c\)

Ta cần chứng minh \(A=f\left(x;y;c\right)=\left[\left(c+x+y\right)^2+\left(c+y\right)^2+c^2\right]\left[\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right]\ge\frac{9}{2}\)

\(\ge\frac{\left(3c+x+y\right)}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)=T\left(x;y;c\right)\)

Xét hiệu \(T\left(x;y;c\right)-T\left(x;y;0\right)=c\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge0\)

Nên \(T\left(x;y;c\right)\ge T\left(x;y;0\right)=\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\)

Cần chứng minh \(\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge\frac{9}{2}\)

...

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

21 tháng 11 2019

Đặt \(P=\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{a^2}{\left(a+2\right)\left(b+2\right)}.\frac{a+2}{27}.\frac{b+2}{27}.\frac{1}{9}}=\frac{4a}{9}\)(1)

\(\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{b^2}{\left(b+2\right)\left(c+2\right)}.\frac{b+2}{27}.\frac{c+2}{27}.\frac{1}{9}}=\frac{4b}{9}\)(2)

\(\frac{c^4}{\left(c+2\right)\left(a+2\right)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{c^2}{\left(c+2\right)\left(a+2\right)}.\frac{c+2}{27}.\frac{a+2}{27}.\frac{1}{9}}=\frac{4c}{9}\)(3)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:

\(P+\frac{2\left(a+b+c\right)+12}{27}+\frac{3}{9}\ge\frac{4\left(a+b+c\right)}{9}\)

\(\Leftrightarrow P+\frac{2}{3}+\frac{3}{9}\ge\frac{4}{3}\)

\(\Leftrightarrow P\ge\frac{1}{3}\left(đpcm\right)\)Dấu"="xảy ra \(\Leftrightarrow a=b=c=1\)

22 tháng 11 2019

Cách khác

Ta co:

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\Sigma_{cyc}\left(a+2\right)\left(b+2\right)+12}\ge\frac{\left(a+b+c\right)^4}{36\left(a+b+c\right)+9\left(ab+bc+ca\right)+108}\ge\frac{3^4}{108.2+9.\frac{\left(a+b+c\right)^2}{3}}=\frac{1}{3}\)

19 tháng 6 2019

\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)

Cần CM : \(\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\ge\left|a+b\right|-\left|c+d\right|\)

\(\Leftrightarrow\)\(\left(a+b\right)^2+\left(c+d\right)^2\ge\left(a+b\right)^2+\left(c+d\right)^2-2\left|\left(a+b\right)\left(c+d\right)\right|\)

\(\Leftrightarrow\)\(\left|\left(a+b\right)\left(c+d\right)\right|\ge0\) ( luôn đúng \(\forall\left|a+b\right|\ge\left|c+d\right|\) ) 

Do đó \(VT\ge\left|a+b\right|-\left|c+d\right|=\left(\sqrt{\left|a+b\right|}\right)^2-\left(\sqrt{\left|c+d\right|}\right)^2\)

\(=\left(\sqrt{\left|a+b\right|}+\sqrt{\left|c+d\right|}\right)\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)

\(\ge2\sqrt[4]{\left|a+b\right|.\left|c+d\right|}\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)

\(=2\left(\sqrt[4]{\left|a+b\right|^3.\left|c+d\right|}-\sqrt[4]{\left|a+b\right|.\left|c+d\right|^3}\right)\) ( đpcm ) 

.

19 tháng 6 2019

Áp dụng bất đẳng thức Mincoxki ta có 

\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)

Buniacoxki \(\sqrt{\left(\left(a+b\right)^2+\left(c+d\right)^2\right)\left(1+1\right)}\ge|a+b|+|c+d|\)

Khi đó cần Cm

\(|a+b|+|c+d|\ge2\left(\sqrt{|a+b|^3|c+d|}-\sqrt{|c+d|^3|a+b|}\right)\)

Đặt \(\sqrt[4]{|a+b|}=x,\sqrt[4]{|c+d|}=y\left(x,y\ge0\right)\)

Cần Cm \(x^4+y^4\ge2\left(x^3y-xy^3\right)\left(1\right)\)

<=> \(x^3\left(x-2y\right)+y^4+2xy^3\ge0\left(2\right)\)

+ Nếu \(x\ge2y\)=> BĐT được CM

+ Nếu \(x\le2y\)

(1) <=> \(x^4+y^4+2xy^3\ge2x^3y\)

Mà \(x^4+x^2y^2\ge2x^3y\)

=> Cần CM \(y^4+2xy^3-x^2y^2\ge0\)

<=> \(y^4+xy^2\left(2y-x\right)\ge0\)luôn đúng do \(x\le2y\)

=> BĐT được CM

Dấu bằng xảy ra khi a=b=c=d=0