K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

\(P=-2\left[\left(1-x\right)-2.\frac{\sqrt{1-x}}{4}+\frac{1}{16}\right]+2+\frac{1}{8}=-2\left(\sqrt{1-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

Max P=17/8  khi 1-x =1/16  hay x = 15/16

17 tháng 12 2015

\(P=-2\left[\left(1-x\right)-\frac{2\sqrt{1-x}}{4}+\frac{1}{16}\right]+\frac{1}{8}=-2\left(\sqrt{1-x}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)

Max P = 1/8 khi 1- x =1/16  => x =1-1/16 =15/16

17 tháng 12 2015

\(P=-2\left[\left(1-x\right)-\sqrt{1-x}+\frac{1}{4}\right]+2+\frac{1}{2}=-2\left(\sqrt{1-x}-\frac{1}{2}\right)^2+\frac{5}{2}\le\frac{5}{2}\)

Max P = 5/2 khi 1-x =1/4 =>x =3/4

19 tháng 12 2016

ko có GTLN có GTNN=-5/4 khi x=-3/4 thôi

19 tháng 12 2016

\(\frac{1}{x-\sqrt{x}+1}\)

dau bai nhu vay ma

27 tháng 10 2020

\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)

\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)

\(\ge1+\frac{13}{4}=\frac{17}{4}\)

Dấu "=" xảy ra <=> x = y = 1/2

8 tháng 3 2018

Ghi thiếu rồi bạn ơi cần đk cho x nữa nha 

8 tháng 3 2018

ko co ban oi

9 tháng 8 2020

Bg

Ta có: A = \(\frac{2012}{9-x}\)   (x \(\inℤ\); x \(\ne\)9)  (x = 9 thì mẫu = 0, vô lý)

Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0

=> 9 - x = 1

=> x = 9 - 1

=> x = 8

=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)

Vậy A đạt GTLN khi A = 2012 với x = 8

9 tháng 8 2020

kết bạn với mình đi