K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 4 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x-1>\sqrt{2x^2-3x-5}\)

- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge\frac{5}{2}\) hai vế ko âm, bình phương:

\(x^2-2x+1>2x^2-3x-5\)

\(\Leftrightarrow x^2-x-6< 0\Rightarrow-2< x< 3\)

\(\Rightarrow\frac{5}{2}\le x< 3\)

30 tháng 7 2019

\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)

Do \(\left(x^2+5\right)>0\)

\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)

Vậy...

6 tháng 8 2016

Điều kiện xác định : \(2x^2-3x-5\ge0\Leftrightarrow\left(x+1\right)\left(2x-5\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge\frac{5}{2}\\x\le-1\end{cases}}\)

Ta có : \(1-x+2\sqrt{2x^2-3x-5}< 0\Leftrightarrow2\sqrt{2x^2-3x-5}< x-1\)

Bình phương hai vế : \(4\left(2x^2-3x-5\right)< x^2-2x+1\)

\(\Leftrightarrow7x^2-10x-21< 0\)

Tới đây lập bảng xét dấu là ra nhé :)

(Cần chú ý tới điều kiện của bài toán)

6 tháng 8 2016

mik cũng lm đến đó rồi nhưng thầy cho đáp án la 5/2<x<3

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

21 tháng 2 2020

a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)

Bpt trở thành: \(-t^2+t+2< 0\)

<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)

Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)

<=>\(-x^2+5x-4>0\)

<=>\(1< x< 4\)

<=>\(x\in\left(1;4\right)\)

NV
22 tháng 2 2020

b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định

Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)