PT đường thẳng đi qua điểm M(5;-3) và cắt 2 trục tọa độ tại 2 điểm A và B sao cho M là trung điểm của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
Lời giải:
Vì PTĐT cần tìm song song với đường thẳng $y=-2x+5$ nên hệ số góc của đường thẳng đó bằng $-2$
Khi đó gọi PTĐT cần tìm là $d: y=-2x+m$
a) $d$ đi qua gốc tọa độ, nghĩa là $d$ đi qua điểm $(0;0)$
Do đó $0=-2.0+m\Leftrightarrow m=0$
Vậy PTĐT cần tìm là $y=-2x$
b) $d$ đi qua điểm $A(-1;10)$
$\Rightarrow y_A=-2x_A+m\Leftrightarrow 10=-2(-1)+m\Leftrightarrow m=8$
Vậy PTĐT cần tìm là $y=-2x+8$
Gọi giao điểm của hai đường thắng y = -x+5 và y = 2x - 3 là M(x1;y1)
Hoành độ giao điểm của hai đường thẳng y = -x+5 và y =2x-3 là nghiệm của phương trình : -x + 5 = 2x - 3
=> 3x = 8
=> \(x=\dfrac{8}{3}\)
=> \(y=-\dfrac{8}{3}+5=\dfrac{7}{3}\)
=> M(\(\dfrac{8}{3};\dfrac{7}{3}\))
Đường thẳng (d) có dạng : y = ax + b (a\(\ne\)0)
Để đường thẳng (d) đi qua A(2;1)
=> 1 = a.2 + b
=> 2a + b = 1 (1)
Để đường thẳng (d) đi qua M(\(\dfrac{8}{3};\dfrac{7}{3}\))
=> \(\dfrac{7}{3}=a\cdot\dfrac{8}{3}+b\)
=> \(\dfrac{8}{3}a+b=\dfrac{7}{3}\) (2)
Từ (1) và (2) suy ra : a = 2; b = -3
Vậy (d) : y = 2x - 3
Lời giải:
Gọi PTĐT $(d)$ là $y=ax+b$
$x+2y=1$
$\Leftrightarrow y=\frac{-1}{2}x+1$
Vì $(d)$ song song với $(y=\frac{-1}{2}x+1)$ nên $a=\frac{-1}{2}$
$(d)$ đi qua $B(0,m)$ nên:
$y_B=ax_B+b$
$\Leftrightarrow m=\frac{-1}{2}.0+b\Leftrightarrow b=m$
Vậy $(d):y=\frac{-1}{2}x+m$ là ptđt cần tìm.
(d): 2y+1=x
=>2y=x-1
=>y=1/2x-1/2
a: Gọi (d1): y=ax+b là phương trình đường thẳng AB
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)
c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm
Vì (d2) có hệ số góc là 5 nên a=5
Vậy: (d2): y=5x+b
Thay x=1 và y=3 vào (d2), ta được:
b+5=3
hay b=-2
d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm
Vì (d3)//(d) nên a=-1/2
Vậy: (d3): y=-1/2x+b
Thay x=1 và y=3 vào (d3), ta được;
b-1/2=3
hay b=7/2
Đặt phương trình đường là \(y=ax+b\)
\(O\left(0;0\right)\in y\Leftrightarrow b=0\left(1\right)\)
\(M\left(2;4\right)\in y\Leftrightarrow2a+b=4\Leftrightarrow a=\dfrac{4-b}{2}\)
\(\left(1\right)\Rightarrow a=2\)
Vậy phương trình đường thẳng thỏa đề bài là \(y=2x\)
Lời giải:
Gọi điểm cố định đó là $(x_0;y_0)$
Điểm cố định mà mọi đường thẳng $d$ đều đi qua là điểm mà khi thay giá trị $x,y$ vào ptđt thì thỏa mãn với mọi $m$
Như vậy:
\((2m+3)x_0+(m+5)y_0+(4m-1)=0, \forall m\)
\(\Leftrightarrow m(2x_0+y_0+4)+(3x_0+5y_0-1)=0, \forall m\)
\(\Rightarrow \left\{\begin{matrix} 2x_0+y_0+4=0\\ 3x_0+5y_0-1=0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_0=-3\\ y_0=2\end{matrix}\right.\) (giải hệ phương trình 2 ẩn đơn giản )
Vậy điểm cố định mà đường thẳng d luôn đi qua là $(-3;2)$
gọi dg thẳng đó là y = ax + b
Thay tọa độ điểm O và điểm M vào đt y = ax + b ta dc:
b = 0 và 2a + b = 4
Thay b = 0 vào pt 2a + b = 4 ta dc 2a = 4 => a = 2
vậy đt đó là y = 2x
Phương trình đường thẳng qua M có dạng:
\(a\left(x-5\right)+b\left(y+3\right)=0\) (a;b khác 0)
\(\Leftrightarrow ax+by-5a+3b=0\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x=0\\by-5a+3b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\frac{5a}{b}-3\end{matrix}\right.\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}ax-5a+3b=0\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{3b}{a}+5\\y=0\end{matrix}\right.\)
Do M là trung điểm AB:
\(\Rightarrow\left\{{}\begin{matrix}-\frac{3b}{a}+5=10\\\frac{5a}{b}-3=-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{b}{a}=-\frac{5}{3}\\\frac{a}{b}=-\frac{3}{5}\end{matrix}\right.\)
Chọn \(a=3\Rightarrow b=-5\)
Phương trình d: \(3x-5y-30=0\)