1) Cho m>2, chứng minh m2-2m>0.
Cho a<0; b<0 và a>b. Chứng minh 1/a<1/b
Suy ra kết quả tương tự a≥b>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chú ý m > 2 thì m > 0.
b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0 ta thu được 1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được 1 a < 1 b .
1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Suy ra pt luôn có 2 nghiệm
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)
Đề sai r bạn
\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)
Vậy m=`7/4` thì A đạt GTNN
1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)
\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)
Do đó: Phương trình luôn có hai nghiệm
2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)
\(=\left(-2m\right)^2-7\left(2m-1\right)\)
\(=4m^2-14m+7\)
a. m2 ≥ 0 ∀ m
=> m2 +1> 0 ∀ m
b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m
c. m2 ≥ 0 ∀ m
=> m2 +2> 0 ∀ m
d. m2 - 2m +2 = m2 -2m + 1 +1 = (m - 1)2 + 1 > 0 ∀ m
a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)
\(\Leftrightarrow m^2\ne-1\)
mà \(m^2\ge0\forall m\)
nên \(m^2\ne-1\forall m\)
\(\Leftrightarrow m^2+1\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m
b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)
\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)
mà \(\left(m+1\right)^2+2\ge2>0\forall m\)
nên \(\left(m+1\right)^2+2\ne0\forall m\)
hay \(m^2+2m+3\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m
c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)
mà \(m^2\ge0\forall m\)
nên \(m^2\ne-2\forall m\)
\(\Leftrightarrow m^2+2\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m
d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)
\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)
mà \(\left(m-1\right)^2+1\ge1>0\forall m\)
nên \(\left(m-1\right)^2+1\ne0\forall m\)
hay \(m^2-2m+2\ne0\forall m\)
Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m
a: \(m^2+m+1=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Do đó: Phương trình \(\left(m^2+m+1\right)x-3=0\) luôn là pt bậc nhất 1 ẩn
b: \(m^2+2m+3=\left(m+1\right)^2+2>0\)
Do đó: Phương trình \(\left(m^2+2m+3\right)x-m+1=0\) luôn là pt bậc nhất 1 ẩn
a, Ta có : \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy ta có đpcm
b, Ta có : \(m^2+2m+3=m^2+2m+1+2=\left(m+1\right)^2+2>0\)
Vậy ta có đpcm
a) Ta có M < 1. Mà m > 0 nên m.m < m.1 hay m 2 < m.
b) Từ a > b > 0, ta suy ra được a 2 > ab > b 2 . Sử dụng tính chất bắc cầu và liên hệ giữa thứ tự với phép cộng ta có a 2 - b 2 > 0.
a, Thay m = 0 vào phương trình trên ta được
\(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)
Vậy với m = 0 thì x = -1 ; x = 3
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
1, Vì m > 2
\(\Rightarrow\) m - 2 > 2 - 2
\(\Rightarrow\) m(m - 2) > m(2 - 2)
\(\Rightarrow\) m2 - 2m > 0
a < 0; b < 0; a > b
\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))
Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn
Chúc bn học tốt!!