K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

1, Vì m > 2

\(\Rightarrow\) m - 2 > 2 - 2

\(\Rightarrow\) m(m - 2) > m(2 - 2)

\(\Rightarrow\) m2 - 2m > 0

a < 0; b < 0; a > b

\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))

Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn

Chúc bn học tốt!!

28 tháng 5 2018

a) Chú ý m > 2 thì m > 0.

b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0  ta thu được  1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được  1 a < 1 b .

21 tháng 3 2022

1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Suy ra pt luôn có 2 nghiệm

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)

Đề sai r bạn

\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)

Vậy m=`7/4` thì A đạt GTNN

 

1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)

\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)

Do đó: Phương trình luôn có hai nghiệm

2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)

\(=\left(-2m\right)^2-7\left(2m-1\right)\)

\(=4m^2-14m+7\)

24 tháng 1 2021

a. m2 ≥ 0 ∀ m 

=>  m2 +1> 0 ∀ m 

b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m 

c. m2 ≥ 0 ∀ m

=>  m2 +2> 0 ∀ m 

d.   m2 - 2m +2 =  m2 -2m + 1 +1 =  (m - 1)2 + 1 > 0 ∀ m 

 

a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)

\(\Leftrightarrow m^2\ne-1\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-1\forall m\)

\(\Leftrightarrow m^2+1\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)

\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)

mà \(\left(m+1\right)^2+2\ge2>0\forall m\)

nên \(\left(m+1\right)^2+2\ne0\forall m\)

hay \(m^2+2m+3\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)

\(\Leftrightarrow m^2\ne-2\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-2\forall m\)

\(\Leftrightarrow m^2+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)

\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)

mà \(\left(m-1\right)^2+1\ge1>0\forall m\)

nên \(\left(m-1\right)^2+1\ne0\forall m\)

hay \(m^2-2m+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

a: \(m^2+m+1=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Do đó: Phương trình \(\left(m^2+m+1\right)x-3=0\) luôn là pt bậc nhất 1 ẩn

b: \(m^2+2m+3=\left(m+1\right)^2+2>0\)

Do đó: Phương trình \(\left(m^2+2m+3\right)x-m+1=0\) luôn là pt bậc nhất 1 ẩn

27 tháng 1 2022

a, Ta có : \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy ta có đpcm 

b, Ta có : \(m^2+2m+3=m^2+2m+1+2=\left(m+1\right)^2+2>0\)

Vậy ta có đpcm 

25 tháng 4 2017

a) Ta có M < 1. Mà m > 0 nên m.m < m.1 hay m 2  < m.

b) Từ a > b > 0, ta suy ra được  a 2  > ab >  b 2 . Sử dụng tính chất bắc cầu và liên hệ giữa thứ tự với phép cộng ta có  a 2  -  b 2  > 0.

16 tháng 8 2018

19 tháng 4 2021

a, Thay m = 0 vào phương trình trên ta được 

\(x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)

Vậy với m = 0 thì x = -1 ; x = 3 

 

12 tháng 4 2019

27 tháng 1 2022

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

27 tháng 1 2022

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

7 tháng 5 2017

Rút gọn P = -19.