K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk thu gọn bn post tìm nốt nghiệm . 

a, \(x\left(1-2x\right)+\left(2x^2-x-4\right)\)

\(=\left(x-2x^2\right)\left(2x^2-x-4\right)\)

\(=2x^2-x^2-4x-4x^4+2x^3+8x^2\)

\(=4x^3+7x^2-4x-4x^4\)

b, \(x\left(x-5\right)-x\left(x+2\right)+7x\)

\(x^2-5x-x^2-2x+7x\)

\(=0\)đề sai . 

`@` `\text {Ans}`

`\downarrow`

`4,`

`a)`

\(f(x)=x(1-2x) + (2x^2 -x +4 )=0\)

`=> x-2x^2 + 2x^2-x+4=0`

`=> (x-x)+(-2x^2+2x^2)+4=0`

`=> 4=0 (\text {vô lí})`

Vậy, đa thức không có nghiệm.

`b)`

\(g(x) = x(x-5) - x(x+2)+ 7x=0\)

`=> x^2-5x-x^2-2x+7x=0`

`=> (x^2-x^2)+(-5x-2x+7x)=0`

`=> 0=0 (\text {luôn đúng})`

Vậy, đa thức có vô số nghiệm.

`c)`

\(h(x)= x(x-1) +1=0\)

`=> x^2-x+1=0`

Vì \(x^2 \ge 0\) \(\forall\) `x`

`=> x^2 - x + 1 \ge 1`\(\forall x\)

`1 \ne 0`

`=>` Đa thức vô nghiệm.

`\text {#KaizuulvG}`

Câu \(b,\) là \(x\in R\) cậu nhé!

4 tháng 2 2016

a, f(x)= x - 2x^2 + 2x^2 - x + 4 = 4

b, g(x) = x^2 - 5x - x^2 - 2x + 7x = 0

26 tháng 5 2016

a, f(x)= x-2x2+2x2-x+4=4

 Vậy phương trình vô nghiệm.

b, g(x)=x2-5x-x2-2x+7x=0

 Vậy phương trình vô số nghiệm.

c, h(x)=x2-x+1=(x-1/2)2+3/4>0

 Vậy phương trình vô nghiệm.

20 tháng 7 2018

a) F(x) = x.(1-2x) + (2x^2 + 4)

F(x) = x - 2x^2 + 2x^2 + 4

F(x) = x + 4

Để F(x) = 0

=> x + 4 = 0

x = - 4

KL: x = -4 là nghiệm của F(x)

b) G(x) = x.(x-5) - x.(x+2) + 7x

G(x) = x^2 - 5x -x^2- 2x + 7x

G(x) = (x^2 - x^2) + (7x - 5x - 2x)

G(x) =  0 + 0 = 0

=> với mọi giá trị của x đều là nghiệm của G(x)

17 tháng 7 2016

tai sao câu c lai ko phai là h(x)=x(x-1)-5x+5

31 tháng 3 2018

1/

a/ Đặt f (x) = x2 - 3

Khi f (x) = 0

=> \(x^2-3=0\)

=> \(x^2=3\)

=> \(x=\sqrt{3}\)

Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.

b/ Đặt g (x) = x2 + 2

Khi g (x) = 0

=> \(x^2+2=0\)

=> \(x^2=-2\)

=> \(x\in\varnothing\)

Vậy x2 + 2 vô nghiệm.

c/ Đặt P (x) = x2 + (x2 + 3)

Khi P (x) = 0

=> \(x^2+\left(x^2+3\right)=0\)

=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)

Vậy x2 + (x2 + 3) vô nghiệm.

d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)

Khi Q (x) = 0

=> \(2x^2-\left(1+2x^2\right)+1=0\)

=> \(2x^2-\left(1+2x^2\right)=-1\)

=> \(2x^2-1-2x^2=-1\)

=> -1 = -1

Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.

e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)

Khi h (x) = 0

=> \(\left(2x-1\right)^2-16=0\)

=> \(\left(2x-1\right)^2=16\)

=> \(2x-1=4\)

=> 2x = 5

=> \(x=\frac{5}{2}\)

Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).