K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

(x-3) (x+1) > (x-3) (-2x+10)

<=> x + 1 > -2x + 10 (nhân cả 2 vế cho \(\frac{1}{x-3}\))

<=> 2x + x > 10 - 1

<=> 3x > 9

<=> x > 3

Vậy x > 3 

Họcc Tốtt.

9 tháng 5 2020

\(\left(x-3\right)\left(x+1\right)>\left(x-3\right)\left(-2x+10\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-\left(x-3\right)\left(-2x+10\right)>0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1+2x-10\right)>0\)

\(\Leftrightarrow\left(x-3\right)\left(3x-11\right)>0\)

TH1: \(\orbr{\begin{cases}x-3>0\Rightarrow x>3\\3x-11>0\Rightarrow x>\frac{11}{3}\end{cases}\Rightarrow x>\frac{11}{3}}\)

TH2: \(\orbr{\begin{cases}x-3< 0\Rightarrow x< 3\\3x-11< 0\Rightarrow x< \frac{11}{3}\end{cases}\Rightarrow x< 3}\)

Vậy \(x>\frac{11}{3}\)hoặc \(x< 3\)

Ngoài cách làm theo TH1 & TH2 thì bạn có thể làm theo bảng xét dấu cũng được.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488

2 tháng 4 2021

( x - 1 )( x + 2 ) > ( x - 1 )2 + 3

<=> x2 + x - 2 > x2 - 2x + 1 + 3

<=> x2 + x - x2 + 2x > 1 + 3 + 2

<=> 3x > 6 <=> x > 2

Vậy bpt có tập nghiệm { x | x > 2 }

x( 2x - 1 ) - 8 < ( 5 - 2x )( 1 - x )

<=> 2x2 - x - 8 < 2x2 - 7x + 5

<=> 2x2 - x - 2x2 + 7x < 5 + 8

<=> 6x < 13 <=> x < 13/6

Vậy bpt có tập nghiệm { x | x < 13/6 }

1 tháng 11 2021

\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)

\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)

\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)

\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)

2 tháng 1 2022

ĐKXĐ : \(1\le x\le3\)

Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)

<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)

<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)

Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)

Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)

Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)

mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2) 

Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)

Vậy x = 2 là nghiệm bất phương trình