K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:

$y=3x^2-12+12$

Tọa độ đỉnh $P$: \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{12}{2.3}, \frac{4.3.12-12^2}{4.3})=(2,0)\)

20 tháng 12 2019

Ở đây a = 2; b = -2; c = -2. Ta có Δ   =   ( - 1 ) 2   -   4 . 2 . ( - 2 )   =   17

    Trục đối xứng là đường thẳng x = 1/4; đỉnh I(1/4; -17/8) giao với trục tung tại điểm (0; -2).

    Để tìm giao điểm với trục hoành ta giải phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy các giao điểm với trục hoành là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 6 2019

Trục đối xứng x = -1/4; đỉnh I(-1/4; -17/8) giao với trục tung tại điểm (0;2); giao với trục hoành tại các điểm

Giải sách bài tập Toán 10 | Giải sbt Toán 10

a: Trục đối xứng là x=-(-1)/4=1/4

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot2\cdot\left(-2\right)}{4\cdot2}=-\dfrac{17}{8}\end{matrix}\right.\)

Thay y=0 vào (P), ta được:

2x^2-x-2=0

=>\(x=\dfrac{1\pm\sqrt{17}}{4}\)

thay x=0 vào (P), ta được:

y=2*0^2-0-2=-2

b: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-6\right)}{2\cdot\left(-3\right)}=\dfrac{6}{-6}=-1\\y=-\dfrac{\left(-6\right)^2-4\cdot\left(-3\right)\cdot4}{4\cdot\left(-3\right)}=7\end{matrix}\right.\)

=>Trục đối xứng là x=-1

Thay y=0 vào (P), ta được:

-3x^2-6x+4=0

=>3x^2+6x-4=0

=>\(x=\dfrac{-3\pm\sqrt{21}}{3}\)

Thay x=0 vào (P), ta được:

y=-3*0^2-6*0+4=4

c: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-1\right)}{2\cdot\left(-2\right)}=\dfrac{1}{-4}=\dfrac{-1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot\left(-2\right)\cdot2}{4\cdot\left(-2\right)}=\dfrac{17}{8}\end{matrix}\right.\)

=>Trục đối xứng là x=-1/4

Thay y=0 vào (P), ta được:

-2x^2-x+2=0

=>2x^2+x-2=0

=>\(x=\dfrac{-1\pm\sqrt{17}}{4}\)

Thay x=0 vào (P), ta được:

y=-2*0^2-0+2=2

26 tháng 8 2018

y = x2 – 3x + 2 có a = 1 ; b = –3 ; c = 2 ; Δ = b2 – 4ac = (–3)2 – 4.2.1 = 1.

+ Đỉnh của Parabol là Giải bài 1 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Khi x = 0 thì y = 2. Vậy giao điểm với trục tung là A(0 ; 2).

+ Khi y = 0 thì x2 – 3x + 2 = 0. Phương trình có hai nghiệm x = 2 hoặc x = 1.

Vậy giao điểm với trục hoành là B(2 ; 0) và C(1 ; 0).

10 tháng 5 2019

Parabol y = ax2 + bx + c có:

+ Tọa độ đỉnh D là:

Giải bài 6 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Phương trình trục đối xứng là:

Giải bài 6 trang 50 sgk Đại số 10 | Để học tốt Toán 10

24 tháng 3 2017

y = –2x2 + 4x – 3 có a = –2 ; b = 4 ; c = –3 ; Δ= b2 – 4ac = 42 – 4.( –3).( –2) = –8

+ Đỉnh của Parabol là (1 ; –1).

+ Khi x = 0 thì y = –3. Vậy giao điểm với trục tung là A(0 ; –3).

+ Khi y = 0 thì –2x2 + 4x – 3 = 0. Phương trình vô nghiệm.

Vậy Parabol không cắt trục hoành.

Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P):   y = - x2a)      Vẽ parabol (P)b)     Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).c)       Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại MBài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + mCMR: (d) luôn cắt (P) tại 2 điểm phân biệta)      Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị...
Đọc tiếp

Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P):   y = - x2

a)      Vẽ parabol (P)

b)     Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).

c)       Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M

Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

CMR: (d) luôn cắt (P) tại 2 điểm phân biệt

a)      Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P =  khi m thay đổi

Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung

Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1

Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2  sao cho

Bài 6. Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx - m2 + m +1.

            a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).

            b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .

0
20 tháng 12 2023

loading...  loading...  loading...  loading...