chứng tỏ bất phương trình: x2-2x+17<3-4x vô nghiệm
Giúp mình với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha
a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0
Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.
Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0
Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.
b) Với x = 0 ta có x2 = 02 = 0
⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.
Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.
+ Với x = 3, BPT trở thành 32 ≤ 6.3 –5 hay 9 ≤ 13 (đúng)
Do đó x = 3 là nghiệm của bất phương trình.
+ Với x = 4, BPT trở thành: 42 ≤ 6.4 –5 hay 16 ≤ 19 (Đúng)
Do đó x = 4 là nghiệm của bất phương trình.
+ Với x = 5, BPT trở thành 52 ≤ 6.5 –5 hay 25 ≤ 25 (Đúng)
Do đó x = 5 là nghiệm của bất phương trình
+ Với x = 6 , BPT trở thành: 62 ≤ 6.6 –5 hay 36 ≤ 31 (Sai)
Do đó x = 6 không là nghiệm của bất phương trình.
a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.
b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)
a. \(\dfrac{x^2+2x+3}{x^2-x+1}=0\) ⇔x2+2x+3=0 ⇔x2+2x+1+2=0 ⇔(x+1)2+2=0
Vì (x+1)2+2>0 nên phương trình đã cho vô nghiệm.
b) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\) ⇔\(\dfrac{x\left(x-2\right)+4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)
⇔\(x\left(x-2\right)+4\left(x+2\right)=4\) ⇔x2-2x+4x+8-4=0 ⇔x2+2x+4=0 ⇔x2+2x+1+3=0 ⇔(x+1)2+3=0
Vì (x+1)2+3>0 nên phương trình đã cho vô nghiệm.
BPT thì làm sao gọi là luôn dương hả bạn? Đề phải là CMR các BPT sau luôn đúng với mọi $x$.
1.
Ta có: $2x^2-2x+17=x^2+(x^2-2x+1)+16=x^2+(x-1)^2+16\geq 16>0$ với mọi $x\in\mathbb{R}$
Do đó BPT luôn đúng với mọi $x$
2.
$-x^2+6x-18=-(x^2-6x+18)=-[(x^2-6x+9)+9]=-[(x-3)^2+9]$
$=-9-(x-3)^2\leq -9<0$ với mọi $x\in\mathbb{R}$
Vậy BPT luôn đúng với mọi $x$
3.
$|x-1|+|x|+2\geq 0+0+2=2>1$ với mọi $x\in\mathbb{R}$
Do đó BPT luôn đúng với mọi $x$
Thay x =-3 vào vế trái của phương trình , ta có:
3. - 3 2 +2(-3) -21 =27 – 6 -21 =0
Vậy x = -3 là nghiệm của phương trình 3 x 2 +2x -21 =0
Theo hệ thức vi-ét ta có : x 1 x 2 = c/a = -21/3 = -7 ⇒ x 2 = -7/ x 1 = -7/-3 = 7/3
Vậy nghiệm còn lại là x = 7/3
Vì x^2-2x+17<3-4x←→x^2+2x+14<0←→(x+1)^2+13<0←→Vô nghiệm
Ta có: \(x^2-2x+17< 3-4x\)
\(\Leftrightarrow x^2-2x+17-3+4x< 0\)
\(\Leftrightarrow x^2+2x+14< 0\)(1)
Ta có: \(x^2+2x+14\)
\(=x^2+2x+1+13\)
\(=\left(x+1\right)^2+13\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+13\ge13>0\forall x\)
hay \(x^2+2x+14>0\forall x\)(2)
Từ (1) và (2) suy ra \(x\in\varnothing\)
hay bất phương trình \(x^2-2x+17< 3-4x\) vô nghiệm(đpcm)