Cho tam giác ABC có góc A < 90 độ, các đường cao AD và BE cắt nhau tại H (D thuộc bBC, E thuộc AC). Chứng minh các tứ giác DHEC và ABDE nội tiếp đường tròn.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
8 tháng 3 2021
Xét tứ giác DHEC có
\(\widehat{HDC}\) và \(\widehat{HEC}\) là hai góc đối
\(\widehat{HDC}+\widehat{HEC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DHEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
13 tháng 7 2023
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
b; góc ACK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK
5 tháng 1 2023
a: Xét tứ giác DHEC có
góc HDC+góc HEC=180 độ
nên DHEC là tứ giác nội tiếp
b: Xét tứ giác ABDE có
góc AEB=góc ADB=90 độ
Do đo; ABDE là tứ giác nội tiếp