tính giá trị biểu thức (1 -1/2).(1 - 1/3).(1 -1/4)...(1- 1/99)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách tìm BCNN:
- Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
- Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.
A=(1/2+1)*(1/3+1)*(1/4+1).....(1/99+1)
A=3/2*4/3*5/4.....100/99 (Thực hiện tính tổng trong mỗi ngoặc đơn)
A=(3*4*5...100)/(2*3*4...99)
A=100/2 (Rút gọn những thừa số giống nhau ở tử và mẫu)
A=50
Sửa:\(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right).....\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)........\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.............\frac{100}{99}=\frac{3.4....................100}{2.3.................99}=\frac{\left(3.4.......99\right).100}{2.\left(3.4...........99\right)}=\frac{100}{2}=50\)
Vậy A=50
A=\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right)..............\left(\frac{1}{99}+1\right)\)
=\(\frac{3}{2}.\frac{4}{3}.............\frac{100}{99}\)
=\(\frac{100}{2}\)=50
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
ĐẶT : A= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)\(\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
= \(1-\frac{1}{99}=\frac{98}{99}\)
(1 - 1/2)(1 - 1/3)(1 - 1/4) ... (1 - 1/99)
= 1/2*2/3*3/4*...*98/99
= 1/99
Ta có : (1 -1/2)(1-1/3)(1-1/4)..(1-1/99)
=1/2 .2/3.3/4....98/99
=1/99