CMR:1/3+2/3^2+3/3^3+4/3^4+...+100/3^100+101/3^101<3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+..............+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)
\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.............+\dfrac{100}{3^{99}}\)
\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^3}+.....+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+.......+\dfrac{101}{3^{101}}\right)\)
\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6D=3+1+\dfrac{1}{3}+............+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(6D-2D=\left(3+1+\dfrac{1}{3}+..........+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+......+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{203}{3^{100}}< 3\)
\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)
~ Học tốt ~
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)
Trừ (1) cho (2):
\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)
\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)
\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)
\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
a: S=1(1+1)+2(1+2)+...+100(1+100)
=1+2+...+100+1^2+2^2+...+100^2
\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)
\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)
=343450
b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)
=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)
=>4*A=100*101*102*103
=>A=25*101*102*103
thì tính tổng tử M áp dụng công thức thì tử M=
101*(101+1)/2=5151
mẫu M=
(101-100)+(99-98)+...+(3-2)+(1-0)(có 51 cặp số)
=1+1+1+...+1+1(có 51 cặp số)
=1*51
=51
M=5151/51
M=101