Công thức thể hiện tính chất phân phối giữa phép nhân đối với phép cộng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) Phép cộng
Giao hoán: a + b = b + a
Kết hợp: a + ( b + c) = (a + b) + c = a+b+c
Tính chất phân phối: a . b + a.c = a.(b + c)
*) Phép nhân:
Giao hoán: a . b = b . a
Kết hợp: a . (b . c) = (a . b) . c = a.b.c
Áp dụng tính chất phân phối của phép nhân đối với phép cộng: a(b+c)=ab+ac ta có:
25.12 = 25.(10 + 2) = 25.10 + 25.2 = 250 + 50 = 300.
34.11 = 34.(10 + 1) = 34.10 + 34 = 340 + 34 = 374.
47.101 = 47.(100 + 1) = 47.100 + 47.1 = 4700 + 47 = 4747.
1.Phép cộng:
giao hoán: a + b = b + a
Kết hợp : (a + b) + c = a + ( b + c)
Phép nhân:
Giao hoán: a . b = b . a
Kết hợp: (a . b) . c = a( b . c)
2, Luỹ thừa bậc n của a là tích của n thừa số, mỡi thừa số bằng a
3, Nhân hai luỹ thừa cùng cơ số: an . am = an+m
chia hai luỹ thừa cùng cơ số: an : am = an-m ( n lớn hơn hoặc bằng m, n khác 0)
1
tính chất | phép cộng | phép nhân | phép nhân và phép cộng | |
giao hoán | a+b=b+a | a*b=b*a | k | |
kết hợp | (a+b)+c=a+(b+c) | (A*b)*c=a*(b*c) | k | |
phân phối | k co | k có | (a+b)*c=a*c+b*c | |
2 là n số tự nhiên a nhân với nhau
3 a^m/a^n=a^m-n ( phép chia )
a^m*a^n=a^m+n
a)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{{ - 5}}{{56}} + \frac{{ - 11}}{{56}} = \frac{{ - 16}}{{56}} = \frac{{ - 2}}{7}\end{array}\)
b)
\(\begin{array}{l}M = \frac{1}{7}.(\frac{{ - 5}}{8}) + \frac{1}{7}.(\frac{{ - 11}}{8})\\ = \frac{1}{7}.[(\frac{{ - 5}}{8}) + (\frac{{ - 11}}{8})]\\ = \frac{1}{7}.\frac{{ - 16}}{8}\\ = \frac{1}{7}.( - 2)\\ = \frac{{ - 2}}{7}\end{array}\)
* phé cộng :
tính chất giao hoán : a+ b = b + a
tính chất kết hợp : (a+b )+ c = a+ ( b + c))
*phép nhân:
tính chất giao hoán : a . b = b.a
tính chất kết hợp ; (a.b).c = a. (b .c)\
* tính chất phân phối : a. ( b+ c )= a.b+ a.c
a(b+c)=ab+ac