K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

a

Xét \(\Delta'=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> pt có 2 nghiệm phân biệt với mọi giá trị m

b

Do phương trình có 2 nghiệm phân biệt nên theo Viete ta có:\(x_1+x_2=2m;x_1x_2=-2\)

Khi đó:\(x_1^2+x_2^2-x_1^2x_2^2-1\)

\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)

\(=4m^2+4-4-1=4m^2-1\ge-1\)

Dấu "=" xảy ra tại m=0

Vậy............................................................

23 tháng 4 2020

Ta có: \(\Delta=\left(2m-1\right)^2+7>0\forall x\)

Nên pt (1) có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi-et ta có:

\(x_1+x_2=2m,x_1\cdot x_2=m-2\)

\(B=x_1^2+x_2^2-x_1^2\cdot x_2^2-1=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)

Thay Vi-et và biến đổi ta có: \(B=\left(m+\frac{1}{3}\right)^2-\frac{4}{3}\ge\frac{-4}{3}\forall m\)

Xét dấu "=" xảy ra và kết luận

26 tháng 4 2023

loading...  

NV
22 tháng 3 2022

a. Phương trình có nghiệm \(x=-1\) nên:

\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)

\(\Leftrightarrow1+2m-2+m-5=0\)

\(\Leftrightarrow m=2\)

Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)

b.

\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=4\left(m-1\right)^2-2\left(m-5\right)\)

\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)

4 tháng 4 2023

a) Ta có :  \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)

=> Phương trình luôn có 2 nghiệm phân biệt

b) Hệ thức Viete : 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)

Do (m - 1)2 + 3 \(\ge3\forall m\)

nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)

Vậy Mmin = -2 <=> m = 1

27 tháng 5 2021

PT có 2 nghiệm phân biệt`<=> \Delta' >0`

`<=> m^2-1>0`

`<=> m<-1 ; 1 <m`

Viet: `x_1+x_2=2m`

`x_1x_2=1`

Theo đề: `x_1^2+x_2^2=8`

`<=> (x_1+x_2)^2-2x_1x_2=8`

`<=> 4m^2-2=8`

`<=> 4m^2 - 10=0`

`<=>` \(\left[{}\begin{matrix}m=\dfrac{\sqrt{10}}{2}\\m=-\dfrac{\sqrt{10}}{2}\end{matrix}\right.\)

Vậy `m=\pm \sqrt10/2`.

27 tháng 5 2021

nhanh đi đang gấp lắm

a: Δ=(2m-1)^2-4*(-m)

=4m^2-4m+1+4m=4m^2+1>0

=>Phương trình luôn có nghiệm

b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(2m-1\right)^2-3\left(-m\right)\)

=4m^2-4m+1+3m

=4m^2-m+1

=4(m^2-1/4m+1/4)

=4(m^2-2*m*1/8+1/64+15/64)

=4(m-1/8)^2+15/16>=15/16

Dấu = xảy ra khi m=1/8

23 tháng 2 2022

a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)

AH
Akai Haruma
Giáo viên
11 tháng 5 2021

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)