TÌM SỐ NGUYÊN TỐ P SAO CHO: 4P+3, 4P+17 LÀ NHỮNG SỐ NGUYÊN TỐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét p=2, 4p+17=4.2+17=25 thỏa mãn
Xét p>2 => p=2k+1
=> 4p+17=4(2k+1)+17=8k+21
Mà 4p+17 là số chính phương lẻ nên chia 4 dư 1
mà với p> 2 thì 4p+17 chia 8 dư 5
=> không có giá trị p>2 thỏa mãn
Vậy p=2
Dùng phương pháp đánh giá em nhá.
Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)
p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)
Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)
p = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)
p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)
Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)
Từ những phân tích trên ta có p = 2; 3
Kết luận: p \(\in\) {2; 3}
Gọi d là ƯCLN(2p + 1; 4p + 1)
⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d
⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d
⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d
⇒ (4p + 2) - (4p + 1) ⋮ d
⇒ 4p + 2 - 4p - 1 ⋮ d
⇒ 2 - 1 ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau
Dùng phương pháp đánh giá em nhá.
+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn); 4p + 1 = 9 (loại)
+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn); 4p + 1 = 13 (thỏa mãn)
+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:
p = 3k + 1; p = 3k + 2 (k \(\in\)N*)
Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)
Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)
Từ những phân tích trên ta có: p = 3
Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.
Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.
Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.
Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)
Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.
Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.
Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.
b,
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.
Vậy $p=3$ là đáp án duy nhất.
sao p = 5 vậy bạn mình k hiểu bài này