K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a)
Có BC // AD ( cùng vuông góc trên một đường thẳng )

mà BC // EF (giả thuyết)
=>AD // EF ( cùng song song với BC )

24 tháng 10 2021

a, Vì BC và AD cùng vuông góc với AB nên BC//AD

Do đó AD//EF

b, \(\widehat{BAE}=360^0-\widehat{BAD}-\widehat{DAE}=360^0-90^0-130^0=140^0\)

24 tháng 10 2021

Anh ko kẻ thêm à

29 tháng 3 2022

undefined hình ảnh r

21 tháng 3 2021

A B C D 4 9 E I

a, Xét tam giác ABD và tam giác BDC ta có : 

^BAD = ^CBD ( gt )

^ABD = ^BDC ( so le trong )

Vậy tam giác ABD ~ tam giác BDC ( g.g )

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)

\(\Rightarrow BD=\sqrt{36}=6\)cm 

b, Gọi giao điểm AC và BD là I

Xét tam giác BIE và tam giác AID có : BE // AD 

Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)

Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )

\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)

mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)

24 tháng 10 2021

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

31 tháng 7 2019
Mọi người trả lời giùm minh đi minh đang có viêc gâp
1 tháng 8 2019

A B C D E F

a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)

b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2

Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:

\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)

\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)

Theo đề bài ta có AB = AC = 10 < BC = 12

Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)

c) Hướng dẫn:

\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)

Suy ra EB = FC. Từ đó suy ra AE = AF. 

Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)

Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra đpcm