1/2 : 15x = 0,5
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(x=14\Rightarrow x+1=15\)
Thay x+1=15 vào biểu thức A ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-1\)
\(=x-1\)(1)
Thay x=14 vào (1) ta được :
\(A=14-1\)
\(=13\)
\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)
\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)
\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)
Vì x=14 nên 15=x+1
\(A\left(x\right)=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-15\)
\(A\left(x\right)=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}+...+x^4+x^3-x^3+x^2+x^2+x-15\)
\(A\left(x\right)=x^2+x^2+x-15\)
\(\Leftrightarrow A\left(x\right)=14^2+14^2+14-15=196+196-1\)
\(A\left(x\right)=391\)
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=15x^2\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-5x+6\right)-15x^2=0\) (*)
-Đặt \(t=x^2-5x+6\)
(*) \(\Leftrightarrow t\left(t-2x\right)-15x^2=0\)
\(\Leftrightarrow t^2-2xt-15x^2=0\)
\(\Leftrightarrow t^2-5xt+3xt-15x^2=0\)
\(\Leftrightarrow t\left(t-5x\right)+3x\left(t-5x\right)=0\)
\(\Leftrightarrow\left(t-5x\right)\left(t+3x\right)=0\)
\(\Leftrightarrow t-5x=0\) hay \(t+3x=0\)
\(\Leftrightarrow x^2-5x+6-5x=0\) hay \(x^2-5x+6+3x=0\)
\(\Leftrightarrow x^2-10x+6=0\) hay \(x^2-2x+6=0\)
\(\Leftrightarrow x^2-2.5x+25-19=0\) hay \(\left(x-1\right)^2+5=0\) (pt vô nghiệm)
\(\Leftrightarrow\left(x-5\right)^2-19=0\)
\(\Leftrightarrow\left(x-5-\sqrt{19}\right)\left(x-5+\sqrt{19}\right)=0\)
\(\Leftrightarrow x=5+\sqrt{19}\) hay \(x=5-\sqrt{19}\)
-Vậy \(S=\left\{5+\sqrt{19};5-\sqrt{19}\right\}\)
o day la trang toan nhe ban