K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

ai cho tick de minh duoc **** di

AH
Akai Haruma
Giáo viên
12 tháng 5 2022

Lời giải:

$2010\times 4+1005\times 190+2019$

$=1005\times 2\times 4+1005\times 190+2019$

$=1005\times 8+1005\times 190+2019$

$=1005\times (8+190)+2019=1005\times 198+2019=201009$

17 tháng 4 2018

\(\frac{2010.2011-1005}{2010.2010+1005}\)

\(=\frac{2010.\left(2010+1\right)-2005}{2010.2010+1005}\)

\(=\frac{2010.2010+2010-1005}{2010.2010+1005}\)

\(=\frac{2010.2010+1005}{2010.2010+1005}\)

\(=1\)

8 tháng 9 2017

https://olm.vn/hoi-dap/question/1038454.html 

Mình vừa làm cách đây 11 phút nhé !

Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005 

<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005 

<=> 2a2010 + 2b2010 + 2c2010  - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0

<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005  +  a2010​) = 0

<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 ​)2 = 0

=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 ​ = 0

=> a = b = c 

Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .

8 tháng 9 2017

Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005 

<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005 

<=> 2a2010 + 2b2010 + 2c2010  - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0

<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005  +  a2010​) = 0

<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 ​)2 = 0

=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 ​ = 0

=> a = b = c 

Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .

19 tháng 2 2018

       a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005 

<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005 

<=> 2a2010 + 2b2010 + 2c2010  - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0

<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005  +  a2010​) = 0

<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 ​)2 = 0

=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 ​ = 0

=> a = b = c 

25 tháng 2 2020

ta có \(\frac{a}{b}=\frac{c}{d}\)

=>\(\frac{a}{c}=\frac{b}{d}\)(1)

Từ (1) => \(\frac{a^{1005}}{c^{1005}}=\frac{b^{1005}}{d^{1005}}=\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}\)(2)

Từ (1) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

=>\(\left(\frac{a}{c}\right)^{1005}=\left(\frac{b}{d}\right)^{1005}=\left(\frac{a+b}{c+d}\right)^{1005}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)(3)

mà \(\left(\frac{a}{c}\right)^{1005}=\frac{a^{1005}}{c^{1005}}\)

từ 2 zà 3 => ghi lại cái cần chứng minh nha ( dpcm)

18 tháng 5 2016

\(\Leftrightarrow2\left(a^{2010}+b^{2010}+c^{2010}\right)=2\left(a^{1005}b^{1005}+b^{1005}c^{1005}+c^{1005}a^{1005}\right)\)

\(\Leftrightarrow2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2c^{1005}a^{1005}=0\)

\(\Leftrightarrow\left(a^{2010}-2a^{1005}b^{1005}+b^{2010}\right)+\left(b^{2010}-2b^{1005}c^{1005}+c^{2010}\right)+\left(c^{2010}-2c^{1005}a^{1005}+a^{2010}\right)=0\)

\(\Leftrightarrow\left(a^{1005}-b^{1005}\right)^2+\left(b^{1005}-c^{1005}\right)^2+\left(c^{1005}-a^{1005}\right)^2=0\)

\(\Rightarrow\left(a^{1005}-b^{1005}\right)^2=0;\left(b^{1005}-c^{1005}\right)^2=0;\left(c^{1005}-a^{1005}\right)^2=0\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\left(a-a\right)^{20}+\left(a-a\right)^{11}+\left(a-a\right)^{2010}=0\)

2 ( a trên 2010 + b trân 2010 + c trên 2010 ) = 2 ( a trên 1005 b trên 1005 + b trên 1005 c trên 1005 + c trên 1005 a trên 1005 )

2a^ ( 2010 ) + 2b^ ( 2010 ) + 2c^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) - 2b^ ( 1005 ) c^ ( 1005 ) - 2c^ ( 1005 )a^ ( 1005 ) = O\)

( a^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) + b^ ( 2010 ) + ( b^( 2010 ) - 2b^ ( 1005 ) c^ ( 1005 ) + c^ ( 2010 ) + ( c^ ( 2010 ) - 2c^ ( 1005 ) a^ ( 1005 ) + a^ ( 2010 ) = 0\)

( a^ ( 1005 ) ^2 + ( b^ ( 1005 ) - c^ ( 1005 ) ^2 + ( c^ ( 1005 ) - a^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)

( a^ ( 1005 ) - b^ ( 1005 ) ^ 2= 0 : ( b^ ( 1005 ) - c^ ( 1005 ) ^2 = 0 : ( c^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)

a = b = c

( a - a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a - a ) ^ (2010 = 0\)

Vậy :  ( a -a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a + a ) ^ ( 2010 = 0\)