giúp mình bài này với ạ mình cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=\dfrac{18}{5}\left(cm\right);AH=\dfrac{AB\cdot AC}{BC}=\dfrac{24}{5}\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)
Mà \(BD+DC=BC=10\Rightarrow\dfrac{7}{4}DC=10\Rightarrow DC=\dfrac{40}{7}\left(cm\right)\)
\(\Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow HD=BD-BH=\dfrac{30}{7}-\dfrac{18}{5}=\dfrac{24}{35}\)
Áp dụng PTG: \(AD=\sqrt{AH^2+HD^2}=\sqrt{\left(\dfrac{24}{35}\right)^2+\left(\dfrac{24}{5}\right)^2}=\dfrac{24\sqrt{2}}{7}\approx4,85\left(cm\right)\)
`sin3x sinx+sin(x-π/3) cos (x-π/6)=0`
`<=> 1/2 (cos2x - cos4x) + 1/2(-sin π/6 + sin (2x-π/2)=0`
`<=> cos2x-cos4x-1/2+ sin(2x-π/2)=0`
`<=>cos2x-cos4x-1/2+ sin2x .cos π/2 - cos2x. sinπ/2=0`
`<=> cos2x - cos4x - cos2x = 1/2`
`<=> cos4x = cos(2π)/3`
`<=>` \(\left[{}\begin{matrix}4x=\dfrac{2\text{π}}{3}+k2\text{π}\\4x=\dfrac{-2\text{π}}{3}+k2\text{π}\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\\x=-\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\end{matrix}\right.\)
1. Turn on (please+Vo)
2. Turned / off (was chia qk)
3. Look for
4. Got up (because S+ had+V3/ed, S+V2/ed)
5. Ran into( hai hd lien tiep)
6. Goes on (after S+V2/ed, S+Vht)
c)\(\left\{{}\begin{matrix}u_1+u_3=3\\u_1^2+u_3^2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_3=3\\\left(u_1+u_3\right)^2-2u_1u_3=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_3=3\\u_1u_3=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}u_1=2\\u_3=1\end{matrix}\right.\\\left\{{}\begin{matrix}u_1=1\\u_3=2\end{matrix}\right.\end{matrix}\right.\)
Làm nốt (sử dụng công thức: \(u_n=u_1+\left(n-1\right)d\) để tìm được công sai
\(S_n=nu_1+\dfrac{n\left(n-1\right)}{2}d\) để tính tổng 15 số hạng đầu)
d)\(\left\{{}\begin{matrix}u_1+u_2+u_3=14\\u_1u_2u_3=64\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_2-d+u_2+u_2+d=14\\\left(u_2-d\right)u_2\left(u_2+d\right)=64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_2=\dfrac{14}{3}\\\left(u_2^2-d^2\right)u_2=64\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{14}{3}=u_2=u_1+d\\d=\dfrac{2\sqrt{889}}{21}\end{matrix}\right.\\\left\{{}\begin{matrix}\dfrac{14}{3}=u_1+d\\d=\dfrac{-2\sqrt{889}}{21}\end{matrix}\right.\end{matrix}\right.\)
(Làm nốt,số xấu quá)
e)\(\left\{{}\begin{matrix}u_1+u_2+u_3=7\\u_1^2+u_2^2+u_3^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_2+u_3=7\\u_1u_2u_3=\dfrac{21-\left(u_1+u_2+u_3\right)^2}{2}=-14\end{matrix}\right.\)
Làm như ý d)
a: Xét tứ giác AOBM có
góc OAM+góc OBM=180 độ
=>AOBM nội tiếp
b: \(cosAOM=\dfrac{OA}{OM}=\dfrac{1}{3}\)
nên \(\widehat{AOM}\simeq71^0\)
=>\(\widehat{AOB}\simeq142^0\)
=>sđ cung nhỏ AB là 142 độ; sđ cung lơn AB=360-142=218 độ
c:
Xét (O) có
ΔBAC nội tiếp
BC là đường kính
=>ΔBAC vuông tại A
=>BA vuông góc AC
Xét(O) có
MA,MB là tiêp tuyến
nên MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM//AC
góc ACB=góc OAC
góc OAC=góc AOM
=>góc ACB=góc AOM=góc BOM
d: góc DOM+góc BOM=90 độ
góc DMO+góc AOM=90 độ
mà góc BOM=góc AOM
nên góc DOM=góc DMO
=>DO=DM
Nửa chu vi hình chữ nhật:14 cm
Gọi chiều dài hình chữ nhật là x (cm) với \(7< x< 14\)
Chiều rộng hình chữ nhật là: \(14-x\) (cm)
Diện tích ban đầu của hình chữ nhật: \(x\left(14-x\right)\)
Chiều dài hình chữ nhật sau khi tăng 1cm: \(x+1\)
Chiều rộng sau khi tăng 2cm: \(14-x+2=16-x\)
Diện tích lúc sau: \(\left(x+1\right)\left(16-x\right)\)
Do diện tích tăng lên 25 \(cm^2\) nên ta có pt:
\(\left(x+1\right)\left(16-x\right)-x\left(14-x\right)=25\)
\(\Leftrightarrow x+16=25\)
\(\Leftrightarrow x=9\left(cm\right)\)
Vậy hình chữ nhật ban đầu dài 9cm và rộng 5cm