Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB d) AE = 3KI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECK có
AK//EC
AK=EC
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)
Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)
\(\Rightarrow AK=CE\) và \(AK//CE\)
=> AECK là hình bình hành
b) Ta có: O là giao điểm 2 đường chéo AC và BD
=> O là trung điểm AC
=> O là trung điểm KE(AECK là hình bình hành)
=> E,O,K thẳng hàng
a: Xét tứ giác AECK có
AK//CE
AK=CE
=>AECK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AECK là hbh
=>AC cắt EK tại trung điểm của mỗi đường
=>E,O,K thẳng hàng
c: Xét ΔDMC có
E là trung điểm của DC
EN//MC
=>N là trung điểm của DM
=>DN=NM
Xét ΔABN có
K là trung điểm của BA
KM//AN
=>M là trung điểm của BN
=>MB=MN=DN
a. Vì ABCD là hbh nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AK=BK=EC=ED\)
Mà AB//CD nên AK//CE
Vậy AECK là hbh
b. Vì ABCD là hbh mà O là giao của AC và BD nên O là trung điểm AC và BD
Mà AECK là hbh nên O cũng là trung điểm EK
Vậy E,O,K thẳng hàng
a: Xét tứ giác AECK có
AK//CE
AK=CE
=>AECK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AKCE là hbh
=>AC cắt KE tại trung điểm của mỗi đường
=>O là trung điểm của KE
c: Xét ΔDMC có
E là trung điểm của DC
EN//MC
=>N là trung điểm của DM
=>DN=NM
Xét ΔABN có
K là trung điểm của BA
KM//AN
=>M là trung điểm của BN
=>DN=MN=MB
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)
mà AB=CD(Hai cạnh đối của hình bình hành ABCD)
nên AE=CF=FD=EB
Xét tứ giác AECF có
AE//CF(AB//CD, E∈AB, F∈CD)
AE=CF(cmt)
Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AEFD có
AE//FD(AB//CD, E∈AB, F∈CD)
AE=FD(cmt)
Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)
mà H∈AF(gt)
và K∈CE(gt)
nên HF//KC và EK//AH
Xét ΔDKC có
F là trung điểm của CD(gt)
FH//DK(cmt)
Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)
⇒DH=KH(1)
Xét ΔABH có
E là trung điểm của AB(gt)
EK//BH(cmt)
Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)
⇒BK=KH(2)
Từ (1) và (2) suy ra DH=HK=KB(đpcm)
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành