Cho hàm số bậc nhất \(y=\left(2-a\right)x+a\). Biết đồ thị hàm số đi qua điểm M(3;1);, hàm số đồng biến hay nghịch biến trên R? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì đồ thị hàm số đi qua điểm \(M\left( {1; - 2} \right)\)nên ta có:
\( - 2 = a.1 - 4 \Leftrightarrow a = - 2 + 4 = 2\)
Hàm số cần tìm là \(y = 2x - 4\) có hệ số góc \(a = 2\).
b) Cho \(x = 0 \Rightarrow y = - 4\) ta được điểm \(A\left( {0; - 4} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{4}{2} = 2\) ta được điểm \(B\left( {2;0} \right)\) trên \(Ox\).
Đồ thị hàm số là đường thẳng đi qua hai điểm \(A\) và \(B\).
Thay A(0,1) vào hàm số y ta có:
\(\left(m-3\right).4+3m-1=1\Leftrightarrow4m-12+3m-1=0\)
\(\Leftrightarrow7m-13=0\Leftrightarrow7m=13\Leftrightarrow m=\dfrac{13}{7}\)
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
Hàm số y = ax + 3 là hàm số bậc nhất nên a ≠ 0
a) Đồ thị của hàm số đi qua điểm A(2; 6) nên:
b) Vẽ đồ thị:
- Cho x = 0 thì y = 3 ta được B(0; 3).
Nối A, B ta được đồ thị hàm số
1: Để hai đường thẳng song song thì 2m-1=-5
hay m=-2
ĐTHS đi qua \(M\left(3;1\right)\Rightarrow Thay\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\Rightarrow1=\left(2-a\right)3+a\Leftrightarrow a=\frac{5}{2}\)
Ta có: \(a=\frac{5}{2}>0\rightarrow HS\) đồng biến trên R