K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

x2 - (2m+1)x + 2m - 4 = 0

\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)\)

\(=4m^2-4m+17>0\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-6x_1x_2+4\)

\(=4m^2+4m+1-12m+28\)

\(=4m^2-8m+29=4\left(m-1\right)^2+25\ge25\)

Dấu "=" xảy ra khi m=1

21 tháng 4 2020

bn ơi sao tách ra đc 4(m-1)^2 + 25 thế ạ

a: Để phương trình có hai nghiệm trái dấu thì

m^2+2m+3<0

=>m^2+2m+1+2<0

=>(m+1)^2+2<0(vô lý)

b:

Δ=(2m+3)^2-4(m^2+2m+3)

=4m^2+12m+9-4m^2-8m-12

=4m-3

Để phương trình có hai nghiệm phân biệt thì 4m-3>0

=>m>3/4

4x1x2=(x1+x2)^2-2(x1+x2)+5

=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5

=>4m^2+8m+12=4m^2+12m+9-4m-6+5

=>8m+12=8m-1

=>12=-1(vô lý)

5 tháng 5 2023

\(Dựa.vào.ĐL.Viet:\\ \left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1.x_2=\dfrac{c}{a}=2m-4\end{matrix}\right.\\ x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-4.\left(m-2\right)=4m^2-8m-4m+12\\ =4.\left(m^2-3m+3\right)=4\left(m^2-3m+\dfrac{9}{4}\right)-3\ge-3\forall m\in R\\ Vậy.GTNN.của.A.là:-3\left(khi:m=\dfrac{3}{2}\right)\)

22 tháng 5 2021

a/ \(x^2-\left(2m+1\right)x+m=0\)

\(\Delta=[-\left(2m+1\right)]^2-4m=4m^2+4m+1-4m=4m^2+1\)

vi 1>0

4m2≥0(với mọi m)

Nên 4m2+1>0(với mọi m)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

22 tháng 5 2021

b)Theo định lí viet \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt

\(\Rightarrow x_1^2-\left(2m+1\right)x_1+m=0\) \(\Leftrightarrow x_1^2-x_1=2mx_1-m\)

\(A=x_1^2-x_1+2mx_2+x_1x_2\)

\(=2mx_1-m+2mx_2+x_1x_2\)\(=2m\left(x_1+x_2\right)-m+x_1x_2\)\(=2m\left(2m+1\right)-m+m\)\(=4\left(m+\dfrac{1}{4}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)

Dấu = xra khi \(m=-\dfrac{1}{4}\)

Vậy minA=\(-\dfrac{1}{4}\)khi \(m=-\dfrac{1}{4}\) 

 

4 tháng 3 2016

Ta có X1+ X22=(X1 + X2)2-2X1X2=S-2P=(-b/a)2-2(c/a)=(m+1)-2(2m-3)=m2+2m+1-4m+6=m2-2m+1+6=(m-1)2+6 >= 6 

Vậy X1+ X22 đạt GTNN khi m-1=0 <=>m=1

4 tháng 3 2016

cảm ơn bạn nha

Δ=(-m)^2-4(2m-4)

=m^2-8m+16=(m-4)^2>=0

=>Phương trình luôn có hai nghiệm

a: x1^2+x2^2=13

=>(x1+x2)^2-2x1x2=13

=>m^2-2(2m-4)-13=0

=>m^2-4m-5=0

=>m=5 hoặc m=-1

b: x1^3+x2^3=9

=>(x1+x2)^3-3*x1x2(x1+x2)=9

=>m^3-3*(2m-4)*m=9

=>m^3-6m^2+12m-9=0

=>m=3

NV
26 tháng 7 2021

\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)

Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)

Do \(x=\pm1< 3\) nên để  \(x_1< x_2< x_3< x_4< 3\) thì:

\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)

Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm

TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)

TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)

26 tháng 7 2021

thầy cho em hỏi nếu bài này đặt \(x^2=t^{ }\left(t\ge0\right)\)

thì giải pt ẩn t có 2 nghiệm phân biệt dương

\(=>\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) em giải ra thì m>0 =)))

 

27 tháng 4 2019

\(x^2-\left(2m+3\right)x-2m-4=0\)

Ta có \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)\)

              \(=4m^2+12m+9+8m+16\)

              \(=4m^2+20m+25\)

               \(=\left(2m+5\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m\ne-\frac{5}{2}\)

theo Viet \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{cases}}\)

Ta cso \(\left|x_1\right|+\left|x_2\right|=5\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=5\)

\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=5\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(-2m-4\right)+2\left|-2m-4\right|=5\)

\(\Leftrightarrow4m^2+12m+9+4m+8+4\left|m+2\right|=5\)

\(\Leftrightarrow4m^2+16m+4\left|m+2\right|+12=0\)

Đến đấy bạn xét khoảng của m so với -2 là xong