Tính giá trị của biểu thức sau biết rằng x+y+1 = 0
D=x2 (x+y) - y2 (x+y) +x2 - y2 +2(x+y) + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
Ta có :
D = x 2 ( x + y ) − y 2 ( x + y ) + x 2 − y 2 + 2 ( x + y ) + 3 = ( x + y ) x 2 − y 2 + x 2 − y 2 + 2 ( x + y ) + 2 + 1 = x 2 − y 2 ( x + y + 1 ) + 2 ( x + y + 1 ) + 1 = x 2 − y 2 ⋅ 0 + 2 ⋅ 0 + 1 = 1 tai x + y + 1 = 0
Vậy D = 1 khi x + y + 1 = 0
Chọn đáp án D
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
M=x^2*(-1)-y^2(x-y)+x^2-y^2+100
=-x^2+y^2+x^2-y^2+100
=100
\(M=x^2\left(x-y\right)-y^2\left(x-y\right)+x^2-y^2+100\)
\(=\left(x-y\right)\left(x^2-y^2\right)+x^2-y^2+100\)
\(=\left(x^2-y^2\right)\left(x-y+1\right)+100\)
\(=\left(x^2-y^2\right).0+100\)
\(=100\)
Vậy \(M=100\)
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Ta có: x + y + 1 = 0 => x + y = -1
D = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
D = (x2 - y2)(x + y) + (x2 - y2) + 2(x + y) + 3
D = (x + y)2(x - y) + (x + y)(x - y) + 2(x + y) + 3
D = (-1)2.(x - y) + (-1)(x - y) + 2.(-1) + 3
D = x - y - x + y - 2 + 3
D = 1
D=x2(x+y)-y2(x+y)+x2-y2+2(x+y)+3
=(x+y)(x2-y2)+(x2-y2)+2(x+y)+2+1
=(x2-y2)(x+y+1)+2(x+y+1)+1
thay x+y+1=0, ta được
D=(x2-y2).0+2.0+1=1
Vậy D=1