K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

Bài làm

\(c=\frac{3}{9}x\frac{2}{8}\)

\(c=\frac{1}{3}x\frac{1}{4}\)

\(c=\frac{1}{12}\)

21 tháng 4 2020

C X 3/9 = 2/8

C = 2/8 : 3/9

C = 1/2

#HOK TỐT

4 tháng 11 2021

B

4 tháng 11 2021

B 28

12 tháng 3 2022

D

22 tháng 8 2021

a) \(6x^3-6x=0\Leftrightarrow6x\left(x^2-1\right)=0\Leftrightarrow6x\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)b) \(2x\left(3x+7\right)-6x^2=28\Leftrightarrow6x^2+14x-6x^2=28\Leftrightarrow14x=28\Leftrightarrow x=2\)

c) \(2\left(4x+4\right)-5\left(x-3\right)=0\Leftrightarrow8x+8-5x+15=0\Leftrightarrow3x=-23\Leftrightarrow x=-\dfrac{23}{3}\)

22 tháng 8 2021

undefined

10 tháng 11 2021

\(a,\Rightarrow x=19-17=2\\ b,\Rightarrow x+8=28:2=14\\ \Rightarrow x=14-8=6\\ c,\Rightarrow42-x=5^2=25\\ \Rightarrow x=42-25=17\)

10 tháng 11 2021

a)x=2

b)x+8=14

x=6

c)\(42-x=5^2\)

\(42-x=25\)

\(-x=-17\)

\(x=17\)

22 tháng 1 2020

Bài toán quy về 2 bài toán nhỏ hơn!

Cho các số dương ab + bc +ca = 1. 

a) Tìm Max: \(M=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

(Lời giải tại: Câu hỏi của Nguyễn Linh Chi. Bài làm của anh Thắng, trong lời giải có phần giống với đề bên trên.)

b) Tìm Min: \(N=a^2+28b^2+28c^2\)

Có: \(N=\frac{1}{4}\left(2a-7b-7c\right)^2+\frac{63}{4}\left(b-c\right)^2+7\left(ab+bc+ca\right)\ge7\left(ab+bc+ca\right)=7\)

Từ đó tìm được \(P\le\frac{9}{4}-7=-\frac{19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

2 tháng 6 2020

Với ab + bc + ca = 1 và áp dụng BĐT AM - GM, ta được:

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)

\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{2\left(a+c\right)}{a+c}+\frac{b+c}{2\left(b+c\right)}}{2}=\frac{2+2+\frac{1}{2}}{2}=\frac{9}{4}\)(*)

Mặt khác, cũng theo AM - GM, ta có:

 \(\frac{a^2}{2}+\frac{49b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49b^2}{2}}=7ab\)(1)

\(\frac{a^2}{2}+\frac{49c^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49c^2}{2}}=7ac\)(2)

\(\frac{7}{2}\left(b^2+c^2\right)\ge\frac{7}{2}.2\sqrt{b^2c^2}=7bc\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{2a^2+56b^2+56c^2}{2}\ge7\left(ab+bc+ca\right)=7\)

hay \(a^2+28b^2+28c^2\ge7\)(**)

Từ (*) và (**) suy ra \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)

\(\le\frac{9}{4}-7=\frac{-19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

1 tháng 10 2021

a, 108 . 28 = (10.2)8 = 208

b. 108 : 28 = (10:2)8= 58

c, 254 . 28 = (52)4 . 28 = 58 . 28 = (5.2)8= 108

d, 158 . 94 = 158 . (32)4 = 158 . 38 = (15.3)8 =  458

e, 272 : 253 = (33)2 : (52)3 = 36 : 56 = (3:5)2 = \(\left(\dfrac{3}{5}\right)^2\)

Hoctot

8 tháng 11 2021

Chọn A nhé!