Tìm số nguyên x, y thỏa mãn: \(\frac{x}{-5}=\frac{1}{y}\)
Help me, please
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}+1=\frac{1}{y-1} \)
\(\frac{x}{5}+\frac{5}{5}=\frac{1}{y-1}\)
\(\frac{x+5}{5}=\frac{1}{y-1}\)
\(\Rightarrow\) (x+5)(y-1) =5
\(\Rightarrow\left(x+5\right)\)và (y-1) \(\in\)Ư(5)
x+5 | 1 | 5 | -1 | -5 |
y-1 | 5 | 1 | -5 | -1 |
x | -4 | 0 | -6 | -10 |
y | 6 | 2 | -4 | 0 |
Vậy (x,y)={(-4,6);(0,2);(-6,-4);(-10,0)}
\(2x+\frac{1}{5}=\frac{1}{y}\)
\(\Leftrightarrow\frac{10x+1}{5}=\frac{1}{y}\)
\(\Leftrightarrow\left(10x+1\right)y=5\)
ta cs bảng sau:
y | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 |
10x+1 | -1 | -5/4 | -5/3 | -5/2 | -5 | 5 | 5/2 | 5/3 | 5/4 | 1 |
x | -1/5 | -9/40 | -4/15 | -7/20 | -3/5 | 2/5 | 3/20 | 1/15 | 1/40 | 0 |
vậy....