Cho pt x^2-(2m-3)x-1=0 giải pt với m =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a ) Tại m = \(\frac{1}{2}\)ta được phương trình mới là :
x2 - 7x = 0
<=> x ( x - 7 ) = 0
<=> x = 0 hoặc x - 7 = 0
<=> x = 0 hoặc x = 7
c) x2 - 2( m + 3 )x + 2m - 1 = 0 ( a = 1 ; b = -2m - 6 ; c = 2m - 1 )
Δ = ( - 2m - 6 )2 - 4 . 1 . ( 2m - 1 )
= 4m2 + 24m + 36
= 4 ( m2 + 6m + 9 )
= 4 ( m + 3 )2 ≥ 0 , với ∀m
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
a, Thay \(m=-3\)vào phương trình ta có :
\(x^2+x\left(m-1\right)-\left(2m+3\right)=0\)
\(< =>x^2-4x+3=0\)
Ta có : \(\Delta=\left(-4\right)^2-4.3=16-12=4;\sqrt{\Delta}=\sqrt{4}=2\)
\(x_1=\frac{4+2}{2}=3\)\(;\)\(x_2=\frac{4-2}{2}=1\)
nên tập nghiệm của phương trình trên là \(\left\{1;3\right\}\)
b, Ta có : \(\Delta=\left(m-1\right)^2+4\left(2m+3\right)\ge0\)
\(=m^2-2m+1+8m+12\ge0\)
\(=m\left(m-2\right)+8\left(m-2\right)+29\ge0\)
\(=\left(m+8\right)\left(m-2\right)+29\ge0\)
\(=m^2+6m+13\ge0\)( đến đây thì chịu r :) )
c, theo vi ét ta có \(x_1+x_2=-\frac{b}{a}\)
\(< =>x_1+x_2=\frac{-m+1}{2}=7\)
\(< =>-m+1=14\)
\(< =>-m=13< =>m=-13\)
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
a/ Bạn tự giải
b/ Đặt \(x^2=t\ge0\)
\(\Rightarrow t^2-2\left(m+1\right)t+2m+1=0\) (1)
Để pt đã cho có 4 nghiệm pb
\(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-2m-1>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\frac{1}{2}\end{matrix}\right.\)
\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)
--> Phương trình luôn có 2 nghiệm phân biệt
--> Không có giá trị m để pt vô nghiệm
a, Thay m = 1 vào pt trên ta được
\(x^2+x-1=0\)
\(\Delta=1-4\left(-1\right)=1+5>0\)
Vậy pt luôn có 2 nghiệm pb
\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)
b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )
Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)
hay ko có gtri nào của m để pt vô nghiệm
\(pt:x^2-\left(2m-3\right)x-1=0\)
\(Thay\cdot m=1:pt\Leftrightarrow x^2+x-1=0\\ \Delta=1^2-4.\left(-1\right).1=5>0\\ \Rightarrow\left\{{}\begin{matrix}x_1=\frac{-1+\sqrt{5}}{2}\\x_2=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
Cảm ơn bạn nha