Cho hàm số y = ax^2
a) Tìm m để đồ thị hàm số trên đi qua điểm (-1 ; 3).
b) Với giá trị của m vừa tìm được ở câu a), hãy tìm các điểm trên đồ thị cách đều hai trục toạ độ.
Giải hộ mình tickk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:
-2a+b=5 và a+b=-4
=>a=-3; b=-1
2:
a: Để hàm số đồng biến thì 2m-1>0
=>m>1/2
a: Thay x=1 và y=-2 vào y=ax, ta được:
1xa=-2
hay a=-2
\(y=\left(m^2-9\right)x+8m\left(1\right)\)
\(a,A\left(0;8\right)\in y=\left(m^2-9\right)x+8m\)
\(\Rightarrow x=0;y=8\)
Thay \(x=0;y=8\) vào \(\left(1\right)\), ta được : \(8=\left(m^2-9\right).0+8m\Rightarrow8m=8\Rightarrow m=1\)
\(b,\) Hàm số trên nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow m^2-9< 0\Leftrightarrow\left(m-3\right)\left(m+3\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-3< 0\\m+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-3>0\\m+3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 3\\m>-3\end{matrix}\right.\\\left\{{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\end{matrix}\right.\)
\(c,\) Hàm số trên qua \(B\left(x_B;y_B\right)\) có hoành độ = 1 \(\Rightarrow x_B=1,y_B=0\)
\(\Rightarrow0=\left(m^2-9\right).1+8.1\Rightarrow m^2-9+8=0\Rightarrow m^2=1\)
\(\Rightarrow\left[{}\begin{matrix}m=-1\\m=1\end{matrix}\right.\)
Mình xin phép sửa lại câu b của bạn Thư một chút nha:
b: Để hàm số nghịch biến thì m^2-9<0
=>(m-3)(m+3)<0
=>-3<m<3
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
a) Hàm số y=ax2 đi qua điểm (-1;3) nên
=> 3==a(-1)2
=> a=3
=> Hàm số là y=3x2
b) Các điểm cách đều 2 trục tọa độ có: |x|=|y|
\(\Rightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\cdot y^2\\x=3\cdot\left(-y\right)^2\end{cases}\Rightarrow}x=3y^2}\)
<=> y(3y-1)=0
=> \(\orbr{\begin{cases}y=0\\3y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=0\\y=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}}\)
=> 2 điểm thỏa mãn là: (0;0) và \(\left(\frac{-1}{3};\frac{1}{3}\right)\)