K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Bài 1:

Đặt a=x-1; b=y-1; c=z-1. Khi đó a;b;c\(\in\)[-1;1], a+b+c=0 và 

\(P=\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3-3abc\)

\(=a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=3\left(a^2+b^2+c^2\right)+3\)

Ta có: \(0\le a^2+b^2+c^2\le2\)

Từ đây ta dễ thấy Min P=3 đạt được khi x=y=z=1

1 tháng 5 2020

Ta xét tống T của 3 số x(1-y);y(1-x);z(1-x)

Ta có T=x(1-y)+y(1-z)+z(1-x)=x+y+z-xy-xz-yz

Theo giả thiết xyz=(1-x)(1-y)(1-z)=1-(x+y+z-xy-xz-yz)-xyz

=> 2xyz=1-T => T=1-2xyz

Nhưng x2y2z2 =[x(1-x)][y(1-y)][z(1-z)]\(\le\frac{1}{4}\cdot\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{64}\)

=> xyz\(\le\)\(\frac{1}{8}\Rightarrow2xy\le\frac{1}{4}\)

Vậy \(T\ge1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(T\ge\frac{3}{4}\)nên trong 3 số x(1-x), y(1-y), z(1-z) có ít nhất một trong 3 số đó \(\ge\frac{1}{4}\left(đpcm\right)\)

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

18 tháng 10 2020

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

28 tháng 11 2016

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

28 tháng 11 2016

=720vix+y3=56vayx=720

23 tháng 5 2016

kho ghe

23 tháng 5 2016

\(a+b+c=1\)

\(P=\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\)

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)