K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

1. Điều kiện: x\(\ne3\)

\(\frac{2020x-2}{x+3}=3\:\Leftrightarrow3\left(x+3\right)=2020x-2\)

\(\Leftrightarrow3x+9=2020x-2\)

\(\Leftrightarrow x=\frac{11}{2017}\left(TM\right)\)

Vậy...

2. Điều kiện: \(\left\{{}\begin{matrix}x\ne3\\x\ne-2\end{matrix}\right.\)

Vì mình không biết phương trình của bạn bằng với cái nào nên mình cho bằng 0 luôn nhé!

\(\frac{2}{x-3}+\frac{5}{x+2}=\)0 \(\Leftrightarrow\frac{2\left(x+2\right)+5\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2x+4+5x-15=0\Leftrightarrow x=\frac{11}{7}\) (TM)

Vậy...

22 tháng 4 2017

\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)

\(\Leftrightarrow5x-10-15x\le9+10x+10\)

\(\Leftrightarrow-20x\le29\)

\(\Leftrightarrow x\ge-1,45\)

Vậy ...........

\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)

\(\Leftrightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\)

\(\Leftrightarrow x=3\)

Vậy ..............

23 tháng 4 2017

 \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)

\(\Leftrightarrow5x-10-15x-9-10x-10\le0\) 

 \(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)

 \(\Leftrightarrow x\ge-\frac{29}{20}\)

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

5 tháng 4 2020

Có phải đề bài là ......... + \(\frac{7}{x^2+5}\)ko bạn???

Ta có: ĐKXĐ : x thuộc R.

\(\frac{4x^2+16}{x^2+6}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)

<=> \(\frac{4x^2+16}{x^2+6}-3=\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)\)

<=> \(\frac{x^2-2}{x^2+6}=\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}\)

<=> \(\frac{x^2-2}{x^2+6}-\frac{2-x^2}{x^2+1}-\frac{2-x^2}{x^2+3}-\frac{2-x^2}{x^2+5}=0\)

<=> ( x2 - 2 ) \(\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)\)= 0           ( vì nhân tử chung là x2 - 2 nên 3 hạng tử sau đổi dấu )

<=> x2 - 2 = 0.      ( vì biểu thức trong ngoặc > 0 với mọi x thuộc R )

<=> \(x=\sqrt{2}\)hoặc \(x=-\sqrt{2}\)

Vậy ..........

27 tháng 6 2016

Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)

=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)

<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)

<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)

<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)

<=>\(x+1>\frac{60}{43}\)

<=> x>\(\frac{17}{43}\)

Vậy x>17/43

3 tháng 2 2020

\(\text{ĐKXĐ : }x\notin\left\{0;-1;-2;-3\right\}\). Ta biến đổi phương trình như sau :

\(\frac{5}{x}+\frac{2}{x+3}=\frac{4}{x+1}+\frac{3}{x+2}\)

\(\Leftrightarrow\left(\frac{5}{x}+1\right)+\left(\frac{2}{x+3}+1\right)=\left(\frac{4}{x+1}+1\right)+\left(\frac{3}{x+2}+1\right)\)

\(\Leftrightarrow\frac{5+x}{x}+\frac{5+x}{x+3}=\frac{5+x}{x+1}+\frac{5+x}{x+2}\)

\(\Leftrightarrow(5+x)\left(\frac{1}{x}+\frac{1}{x+3}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)

\(\Leftrightarrow5+x=0\text{ (1) hoặc }\frac{1}{x}+\frac{1}{x+3}-\frac{1}{x+1}-\frac{1}{x+2}=0\text{ (2) }\).

Ta có :

\(\left(1\right)\Leftrightarrow x=-5\);

\(\left(2\right)\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+1}+\frac{1}{x+2}\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x^2+3x}-\frac{1}{x^2+3x+2}\right)=0\)

\(\Leftrightarrow2x+3=0\text{ hoặc }\frac{1}{x^2+3x}-\frac{1}{x^2+3x+2}=0\).

  • \(2x+3=0\Leftrightarrow x=-\frac{3}{2}\);
  • \(\frac{1}{x^2-3x}-\frac{1}{x^2+3x+2}=0\). Dễ thấy phương trình này vô nghiệm.

Tóm lại, phương trình đã cho có tập nghiệm \(S=\left\{-5;-\frac{3}{2}\right\}\).

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

Vừa lm xong mt bị sụp ... 

\(\frac{1}{x-1}+\frac{3}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)ĐKXĐ : \(x\ne1;-\frac{5}{3};-2;-3\)

\(\frac{1}{x-1}+\frac{3}{3x+5}-\frac{2}{x+2}-\frac{1}{x+3}=0\)

\(\frac{\left(3x+5\right)\left(x+2\right)\left(x+3\right)}{\left(x-1\right)\left(3x+5\right)\left(x+2\right)\left(x+3\right)}+\frac{3\left(x-1\right)\left(x+2\right)\left(x+3\right)}{\left(3x+5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}-\frac{2\left(x-1\right)\left(3x+5\right)\left(x+3\right)}{\left(x+2\right)\left(x-1\right)\left(3x-5\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(3x+5\right)\left(x+2\right)}{\left(x+3\right)\left(x-1\right)\left(3x+5\right)\left(x+2\right)}=0\)

Khử mẫu và rút gọn ta đc : \(-3x^3+2x^2+45x+52=0\)

Mời cao nhân giải tiếp.

3 tháng 2 2017

ĐKXĐ: bạn tự tính nhé

PT tương đương: \(\frac{5}{x-1}-\frac{5}{x-3}=\frac{2}{x+1}-\frac{2}{x-4}\)

<=>\(\frac{5x-15}{\left(x-1\right)\left(x-3\right)}-\frac{5x-5}{\left(x-1\right)\left(x-3\right)}=\frac{2x-8}{\left(x+1\right)\left(x-4\right)}-\frac{2x+2}{\left(x+1\right)\left(x-4\right)}\)

<=>\(\frac{-10}{\left(x-1\right)\left(x-3\right)}=\frac{-10}{\left(x+1\right)\left(x-4\right)}\)

<=>\(\frac{1}{\left(x-1\right)\left(x-3\right)}=\frac{1}{\left(x+1\right)\left(x-4\right)}\)

<=>\(\frac{\left(x+1\right)\left(x-4\right)}{\left(x-1\right)\left(x-3\right)\left(x+1\right)\left(x-4\right)}=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)\left(x+1\right)\left(x-4\right)}\)

=>\(\left(x+1\right)\left(x-4\right)=\left(x-1\right)\left(x-3\right)\)

Còn lại bạn từ làm nhé:)