Q=\(\frac{x+2}{x+3}\)-\(\frac{5}{x^2+x-6}\)+\(\frac{1}{2-x}\) a)rut gon b)tim x de Q=\(\frac{-3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
a) \(B=\left[\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x-4}{x-3}-\frac{\left(x-1\right)}{x+3}\right]:\left(\frac{x+3-1}{x+3}\right)\)
ĐK: \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
\(=\left[\frac{21+x-4-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+2}{x+3}\right)\)
\(=\left[\frac{21+x-4-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\right]\times\left(\frac{x+3}{x+2}\right)\)
\(=\left(\frac{-x^2+5x+14}{x-3}\right)\left(\frac{1}{x+2}\right)\)
\(=\frac{-\left(x^2+2x-7x-14\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{-\left(x+2\right)\left(x-7\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{7-x}{x-3}\)
b) \(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Mà \(x\ne-3\)
\(\Rightarrow x=2\)
Thế \(x=2\)vào B ta được:
\(B=\frac{7-2}{2-3}=-5\)
c) \(B=\frac{7-x}{x-3}=\frac{-3}{5}\)
\(\Leftrightarrow5\left(7-x\right)=-3\left(x-3\right)\)
\(\Leftrightarrow35-5x+3x-9=0\)
\(\Leftrightarrow-2x=-26\)
\(\Leftrightarrow x=13\)
Vậy để \(B=\frac{-3}{5}\)thì \(x=13\)
d) B<0\(\Rightarrow\frac{7-x}{x-3}< 0\)
TH1: \(\hept{\begin{cases}7-x< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x>3\end{cases}\Rightarrow}x>7}\)
TH2: \(\hept{\begin{cases}7-x>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x< 3\end{cases}\Rightarrow}x< 3}\)
Để B<0 thì x>7 hoặc x<3
a) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\) ĐKXĐ: x khác =-3; x khác -2
\(B=\frac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)
\(B=\frac{3x+6}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)
\(B=\frac{3\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{x+2}\)
\(B=\frac{3}{x-3}\)
b) bước đầu tiên ta phải tìm x:
\(\left|2x+1\right|=5\)
TH1: 2x+1=5 TH2: 2x+1=-5
2x=4 2x=-6
x=2 (nhận) x=-3 (loại)
thay x=2 vào biểu thức B, ta được:
\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)
vậy B=-3 tại x=2
c) Để \(B=-\frac{3}{5}\)thì \(\frac{3}{x-3}=-\frac{3}{5}\)
\(\Leftrightarrow-3\left(x-3\right)=15\)
\(\Leftrightarrow x-3=-5\)
\(\Leftrightarrow x=-2\)
vậy \(x=-2\)thì \(B=-\frac{3}{5}\)
d) để B<0 thì \(\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
vậy để B<0 thì x phải < 3 và x khác -3
\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
\(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)
\(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)
\(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)
Vì \(x\ge0;x\ne1\)
Do đó \(0< 4\sqrt{x}+8\)
Mà \(-\left(3\sqrt{x}+2\right)< 0\)
Vậy \(P< \frac{15}{4}\left(đpcm\right)\)
c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)
\(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)
Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)
Do đó \(P\le4\Leftrightarrow x=1\)
Vậy Max P=4 khi x=1
P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1
P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2)
P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2)
P=3x−8+5√x(√x−1)(√x+2)
P=3x−3√x+8√x−8(√x−1)(√x+2)
P=(3√x+8)(√x−1)(√x−1)(√x+2)
P=(3√x+8)(√x+2)
b)Để P<154 thì (3√x+8)(√x+2) <154
Ta có:(3√x+8)(√x+2) <154
⇔(3√x+8)(√x+2) −154 <0
⇔12√x+32−15√x−304(√x+2) <0
⇔−(3√x+2)4√x+8 <0
Vì x≥0;x≠1
Do đó 0<4√x+8
Mà −(3√x+2)<0
Vậy P<154 (đpcm)
c)Ta có:P=(3√x+8)(√x+2)
⇔P=3√x+6+2(√x+2)
⇔P=3(√x+2)(√x+2) +22√x+2
⇔P=3+2√x+2
Vì x≥0;x≠1⇒2√x+2 ≤1
Do đó
a) \(A=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
\(A=\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x^2-8x+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x^2-11x+10}{\left(x-2\right)\left(x+2\right)}\)
\(a,A=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
\(=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)
\(=\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-8x+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-11x+10}{\left(x-2\right)\left(x+2\right)}\)
\(Q=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(\Leftrightarrow\) \(Q=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(2-x\right)}+\frac{5}{\left(x+3\right)\left(2-x\right)}+\frac{-1}{\left(x+3\right)\left(2-x\right)}\)
\(\Rightarrow\) \(Q=\left(x-2\right)\left(x+2\right)+5-1\)
\(\Leftrightarrow\) \(Q=x^2-4+5-1\)
\(\Leftrightarrow\) \(Q=x^2\)
Thay \(Q=\frac{-3}{4}\) ta được:
\(x^2=\frac{-3}{4}\)
Vì \(\frac{-3}{4}>0\forall x\)
\(\Rightarrow\) Pt vô nghiệm
Vậy không có giả trị nào của x thỏa mãn \(Q=\frac{-3}{4}\)
Chúc bn học tốt!!
cảm ơn nhiều nha