Cho a>b, so sánh 2b+a và 2a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
\(a< b\)
\(\Leftrightarrow2a< 2b\)
\(a< b\)
\(\Leftrightarrow a+a< b+a\)
\(\Leftrightarrow2a< a+b\)
\(a< b\)
\(\Leftrightarrow-1a>-1b\)
\(\Leftrightarrow-a>-b\)
+ a < b ⇒ 2a < 2b (nhân cả hai vế với 2 > 0, BĐT không đổi chiều).
+ a < b ⇒ a + a < b + a (Cộng cả hai vế với a)
hay 2a < a + b.
+ a < b ⇒ (-1).a > (-1).b (Nhân cả hai vế với -1 < 0, BĐT đổi chiều).
hay –a > -b.
a: a>b
=>3a>3b
=>3a+5>3b+5
b: a>b
=>2a>2b
=>2a-3>2b-3>2b-4
Vì a > b
=> 2a > 2b
Mà 3 > 1
=> 2a + 3 > 2b + 1
Vậy 2a + 3 > 2b + 1
Vì a>b suy ra 2a>2b (1)
mà 3 >1 (2)
nên từ (1) và (2) suy ra 2a+3 > 2b +1.
* Ta có: a > b nên 2a > 2b
Suy ra: 2a + 9 >> 2b + 9 (1)
* Lại có: 10 > 9 nên 2a + 10 > 2a + 9 (2)
Từ (1) và (2) suy ra: 2a+ 10 > 2b + 9
Chọn đáp án C
Ta có: \(a+b=a+b\)
Vì \(a>b\)( giả thiết )
\(\Rightarrow a+b+a>a+b+b\)\(\Rightarrow2a+b>a+2b\)
hay \(2b+a< 2a+b\)
Trừ hai biểu thức cho nhau là ra ý mà
Xét hiệu \(\left(2b+a\right)-\left(2a+b\right)=b+b+a-a-a-b\)
\(=\left(b+b-b\right)-\left(a+a-a\right)=b-a\). Mà \(a>b\Leftrightarrow b< a\)
\(\Rightarrow b-a< 0\) hay \(2b+a< 2a+b\)