tìm A đẳng thức biết:
A+(5y3-x+8y)=3y3-y
đáp số : A =?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3x^2-9xy\)
\(=3x\cdot x-3x\cdot3y\)
=3x(x-3y)
c: \(x^2-4x+4-y^2\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
Bài 1:
a: \(2x\left(x^2-3x+5\right)\)
\(=2x\cdot x^2-2x\cdot3x+2x\cdot5\)
\(=2x^3-6x^2+10x\)
c: (x-3)(2x+1)
\(=2x^2+x-6x-3\)
\(=2x^2-5x-3\)
I: Trắc nghiệm
Câu 1: A
Câu 2: A
Câu 3: B
Câu 4: C
Câu 5: B
Câu 8: A
Câu 9: B
Câu 10: C
Câu 11: D
Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)
ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)
<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)
vì x,y là số nguyên nên A cũng nguyên
mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)
=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)
bạn tự giải nha
sai sai ở đâu đấy anh bạn, đây là phương trình chứ đâu có liên quan đến bất đẳng thức đâu.
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 3 :
\(a)\left|3x-2\right|=x\)
\(\Rightarrow\orbr{\begin{cases}3x-2=x\\3x-2=-x\end{cases}\Rightarrow\orbr{\begin{cases}3x-x=2\\3x+x=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=2\\4x=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
vậy \(x=1;x=\frac{1}{2}\)
Bài 10
\(a)\)cách 1: cm vế trái bằng vế phải
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)
\(=a^2-ab-ab+b^2\)
\(=a^2-2ab+b^2\)
cách 2 : cm vế phải = vế trái
\(a^2-2ab+b^2=a^2-ab-ab+b^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right)^2\)
\(b)A=\left(5x^4-3y^3\right)^2\)
\(=\left(5x^4\right)^2-2\times5x^4\times3y^3+\left(3y^3\right)^2\)
\(=25x^8-30x^4y^3+9y^6\)
3.a.
ta có
\(|3x-2|=x\\\Rightarrow\orbr{\begin{cases}3x-2=x\\-3x+2=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-x=2\\-3x-x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2\\-4x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
10a:
ta có
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)
rồi nhân ra là dc
10b:
ta có
\(\left(5x4-3y3\right)^2\)
\(=\left(20x-9y\right)^2\)
\(=\left(400x^2-2.20x.9y+81y^2\right)\)
rồi rút gọn là dc bạn ạ
\(8x^2+14xy+8y^2+2x-2y+2=0\)
\(\Leftrightarrow7\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Do \(\left\{{}\begin{matrix}7\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)
Nên \(7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0;\forall x;y\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A+\left(5y^3-x+8y\right)=3y^3-y\)
<=> \(A=3y^3-y-\left(5y^3-x+8y\right)=\left(3y^3-5y^3\right)+\left(-y-8y\right)+x\)
\(=-2y^3-9y+x\)