Cho x,y,z > 0 CMR \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{36}{9+x^2y^2+y^2z^2+z^2x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Bât đẳng thức cần chứng minh tương đương với :
( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz
Áp dụng bất đẳng thức Côsi ta có :
xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\) ( 1)
Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)
hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\) (2)
Do các vế đều dương ,từ (1) và (2) suy ra :
( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi x = y =z = 1
Bài 2:
\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)
Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Xét \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
<=> \(a^2+b^2\ge2ab\) (luôn đúng)
Dấu bằng xảy ra khi a=b
Áp dụng ta có
\(\frac{1}{x+3y}+\frac{1}{y+2z+x}\ge\frac{4}{2\left(x+2y+z\right)}=\frac{2}{x+2y+z}\)
\(\frac{1}{y+3z}+\frac{1}{z+2x+y}\ge\frac{2}{x+y+2z}\)
\(\frac{1}{z+3x}+\frac{1}{x+2y+z}\ge\frac{2}{2x+y+z}\)
Cộng các vế của các bđt trên
=> ĐPCM
Dấu bằng xảy ra khi x=y=z
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$
$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$
$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$
Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$
$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Đặt \(x^2+2y^2=m;y^2+2z^2=n;z^2+2x^2=p\)
Ta có :\(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\)
\(=\left(1+1+1\right)\left(m+n+p\right)\left(\frac{a^3}{m}+\frac{b^3}{n}+\frac{c^3}{p}\right)\ge\left(a+b+c\right)^3=1\)
do đó \(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge1\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)(đpcm)
Xong rồi đấy,bạn k cho mình nhé
Bài này dùng Cauchy ngược dấu:
\(\Sigma\frac{2x^2}{x+y^2}=\Sigma\frac{2x\left(x+y^2\right)-2xy^2}{x+y^2}=2\left(x+y+z\right)-2.\Sigma\frac{xy^2}{x+y^2}\)
Từ đây ta có thể quy bđt vế chứng minh: \(\Sigma\frac{xy^2}{x+y^2}\le\frac{x+y+z}{2}\)
Ta có: \(VT\le\Sigma\frac{xy^2}{2\sqrt{xy^2}}=\Sigma\frac{\sqrt{xy.y}}{2}\le\frac{xy+yz+zx+x+y+z}{4}\)
Như vậy cần chứng minh: \(xy+yz+zx\le x+y+z\)
Ta có: \(VT=\sqrt{\left(xy+yz+zx\right)^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}=\sqrt{3\left(xy+yz+zx\right)}\le x+y+z\)
Từ đây có đpcm:)
Lời giải:
BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)
Thật vậy, áp dụng BĐT AM-GM:
\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)
\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)
Nhân theo vế ta có BĐT $(*)$ luôn đúng
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$