K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

15 tháng 4 2020

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

2 tháng 2 2016

vẽ hình đi bn

2 tháng 2 2016

Hk đc đẹp cho lắm 

 

2 tháng 6 2017

tứ giác ABHE nooj tiếp => góc ABH = góc HED (1)

Mà góc ADC= gcos ABC (2)

tỪ  1 VÀ 2 => HED = EDC => EH// DC 

2 tháng 6 2017

TỨ GIÁC ABDC nt =>GÓC BAD +GÓC HED =180 ĐỘ

MẶT KHÁC GÓC BAD =BCD =1/2 CUNG BD 

TỪ ĐÓ=>>HE // DC

31 tháng 3 2018

sai đề câu a thì phải bn ak

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

30 tháng 5 2018

a) Ta có\(\widehat{ADB}=\widehat{AFB}=90độ\left(gt\right)\)

Nên tứ giác ABDF nội tiếp ( 2 đỉnh EF cùng nhìn AB với 2 góc bằng nhau)

b) Ta có \(\widehat{AEDC}=90độ\)(góc nội tiếp chắn nửa đường tròn)

Nên ΔACE vuông tại C

Xét 2 tam giác vuông ABD và ACE có

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Nên ΔABD ~ ΔACE

Do đó \(\frac{AB}{AC}=\frac{AD}{AE}\)

Hay AB.AE=AD.AC

c) (Mình nghĩ câu này bạn ghi nhầm, theo mình thì ở đây ta phải chứng minh DF vuông góc AC)

Ta có \(\widehat{DFE}=\widehat{ABD}\)(tứ giác ABDF nội tiếp)

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Do đó \(\widehat{DFE}=\widehat{AEC}\)

Ta lại có 2 góc này ở vị trí so le trong

Nên DF song song EC

Mà EC vuông góc AC

Suy ra DF vuông góc AC