Mặt cầu tâm O và đi qua điểm A(0;4;3) có diện tích là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình mặt cầu (S) cần tìm có dạng: x 2 + y 2 + z 2 – 2ax – 2by – 2cz + d = 0.
Vì
A ∈ (S) nên ta có: 1 – 2a + d =0 (1)
B ∈ (S) nên ta có: 4 + 4b + d = 0 (2)
C ∈ (S) nên ta có: 16 – 8c + d = 0 (3)
D ∈ (S) nên ta có: d = 0 (4)
Giải hệ 4 phương trình trên ta có: d = 0, a = 1/2, b = −1,c = 2.
Vậy mặt cầu (S) cần tìm có phương trình là: x 2 + y 2 + z 2 –x + 2y – 4z = 0
Phương trình mặt cầu (S) có thể viết dưới dạng:
Vậy mặt cầu (S) có tâm I(1/2; -1; 2) và có bán kính
Đáp án A
Gọi I(a,b,c) là tâm của mặt cầu (S). Ta có:
=> I(1; 1; 1); R = OI = 3
Vậy phương trình của mặt cầu (S) là: ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 3
Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2 (1)
Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2 (2)
Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2 (3)
Ta lại có:
AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2 (4)
DC 2 = 4 r 2 - h 2 , AB 2 = 4 h 2 (5)
Từ (4) và (5) ta có:
AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2 (6)
Từ (3) và (6) ta có: AD 2 + BC 2 = AC 2 + BD 2 (không đổi)
Diện tích tam giác BCD bằng:
Diện tích này lớn nhất khi AI // CD.
Chọn D
Giả sử (S): x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0 (a2 + b2 + c2 - d > 0)
và tâm I (a;b;c) ∈ (P) => a + b - c - 3 = 0 (1)
(S) qua A và O nên
Cộng vế theo vế (1) và (2) ta suy ra b = 2. Từ đó, suy ra I (a; 2; a-1)
Chu vi tam giác OAI bằng 6 + √2 nên OI + OA + AI = 6 + √2
+ Với a = -1 => A (-1; 2; -2) => R = 3. Do đó:
+ Với a = 2 => I (2;2;1) => R = 3. Do đó:
Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).
Mặt phẳng (ABO) qua tâm O của hình cầu nên cắt mặt cầu theo đường tròn lớn qua A và B. Gọi I là trung điểm của đoạn AB ta có OI ⊥ AB. Vì AB // OH nên AIOH là hình chữ nhật.
Do đó
Vậy AB = 2AI = r
Chú ý: Có thể nhận xét rằng tam giác OAB cân tại O (OA = OB) và có góc ∠ OAB = 60 ° nên OAB là tam giác đều và suy ra AB = OA = OB = r.
\(\overrightarrow{OA}=\left(0;4;3\right)\Rightarrow R=OA=\sqrt{0+4^2+3^2}=5\)
Diện tích mặt cầu: \(S=4\pi R^2=100\pi\)