Tìm số tự nhiên n sao cho 2n+1 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
2n + 7 chia hết cho n + 1
=> 2n + 2 + 5 chia hết cho n + 1
2n + 2 chia hết cho n +1
=> 5 chia hết cho n + 1
Mà n là số tự nhiên => n + 1 \(\in\){1;5}
n + 1 = 1 ; n = 0
n + 1 = 5 ; n = 4
Vậy n \(\in\){0;4}
a)Ta có: (n+3) chia hết cho n+1
=>(n+1)+2 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 2 chia hết cho n+1
=> n+1 thuộc Ư(2)={1;2}
=> n thuộc {0;1}
b)Ta có (2n+2)+5 chia hết cho n+1
=>2(n+1)+5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1
=>5 chia hết cho n+1
=>n+1 thuộc Ư(5)={1;5}
=> n thuộc {0;4}
2n + 7 chia hết n + 1
=> 2(n+1) + 5 chia hết n + 1
=> 5 chia hết n + 1
=> n + 1 thuộc Ư(5) = { +-1 ; +-5 }
=> n = 0 ; -2 ; 4 ; -6 (tm)
Còn bài 2 thì bạn lập bảng ra là đc chứ j @@
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
d))Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
)Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Ta có \(\left(2^n+1\right)⋮7\)
\(\Rightarrow2^n+1\in B\left(7\right)\)
\(\Rightarrow2^n+1\in\text{{}0;7;14;21;35;....\)
\(\Rightarrow2^n\in\text{{}-1;6;13;20;34;41;...\)
Vậy \(n\in\varnothing\)
Ta có \(2^n+1⋮7\)
\(=>2^n+1\in B\left(7\right)\)
\(\Rightarrow2^n+1\in\left(0;7;14,21,35,....\right)\)
\(\Rightarrow2^n\in\left(-1,6,13,20,34,...\right)\)
vậy n \(\in\varnothing\)